Here are some examples for those type of reactions.
<span>
Combustion reaction: CH4(g) + 2 O2(g) --> CO2(g) + 2 H2O(l)
</span><span>
Decomposition reaction: CaCO3(s) ---> CaO(s) + CO2(g)
</span><span>Double replacement: AgNO3(aq) + NaCl(aq) ---> AgCl(s) + NaNO3(aq)
</span>One common thing in all is that they are reactions. They have reactants to form new substances called product.
Answer: Avogrado's Constant
Explanation:
One mole of a substance is equal to 6.022 × 10²³ units of that substance (such as atoms, molecules, or ions). The number 6.022 × 10²³ is known as Avogadro's number or Avogadro's constant. The concept of the mole can be used to convert between mass and number of particles.
D because wants you add the equation it should increase temp but decrease the value in pressure
A) Ca(OH)2 + CO2 —> CaCO3 + H2O
B) when Ca(OH)2 is reacted with CO2, the CaCO3 produced is a precipitate which turns the solution milky
The number of grams of Cl2 formed when 0.385 mol HCl reacts with an excess of O2 is 13.6675 g.
<h3>What are moles?</h3>
A mole is defined as 6.02214076 ×
of some chemical unit, be it atoms, molecules, ions, or others. The mole is a convenient unit to use because of the great number of atoms, molecules, or others in any substance.
Given data:
Moles of hydrochloric acid = 0.385 mol
Mass of chlorine gas =?
Chemical equation:
4HCl + O₂ → 2Cl₂ + 2H₂O
Now we will compare the moles of Cl₂ with HCl.
HCl : Cl₂
4 : 2
0.385 : 2÷4× 0.385 = 0.1925 mol
Oxygen is present in excess that's why the mass of chlorine produced depends upon the available amount of HCl.
Mass of Cl₂ :
Mass of Cl₂ = moles × molar mass
Mass of Cl₂ =0.1925 mol × 71 g/mol
Mass of Cl₂ = 13.6675 g
Hence, the number of grams of Cl2 formed when 0.385 mol HCl reacts with an excess of O2 is 13.6675 g.
Learn more about moles here:
brainly.com/question/8455949
#SPJ1