Answer:
(D) x = 93.8 m
Explanation:
v^2 = v0^2 + 2ax
(20 m/s)^2 = (5 m/s)^2 + 2(2 m/s^2)x
Solving for x,
x = 93.8 m
Answer:
a = 8.951 m/s²
Explanation:
given,
angle = 0.52 radians
μ_s = 0.84
μ_k = 0.48
acceleration = ?
using
F + f = m a
mg sin θ + μk mg cos θ = m a
a = g sin θ + μk g cos θ
a = 9.8 x sin 0.52 + 0.48 x 9.8 x cos 0.52
a = 4.869 + 4.082
a = 8.951 m/s²
the magnitude of acceleration is a = 8.951 m/s²
Answer:


178.888896 m
12790.56 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

The acceleration is 

The acceleration is 

Distance traveled in the first 8 seconds is 178.888896 m

Distance traveled during 8-60 second interval is 12790.56 m
Answer:
v = 10.84 m/s
Explanation:
using the equation of motion:
v^2 = (v0)^2 + 2×a(r - r0)
<em>due to the hammer starting from rest, vo = 0 m/s and a = g , g is the gravitational acceleration.</em>
v^2 = 2×g(r - r0)
v = \sqrt{2×(-9.8)×(4 - 10)}
= 10.84 m/s
therefore, the velocity at r = 4 meters is 10.84 m/s