Answer:
Explanation:
Volume per unit time flowing will be conserved
a₁v₁ = a₂ v₂
π r₁² x v₁ = π r₂² x v₂
(0.9 x 10⁻²)² x .35 = ( .45 x 10⁻² )² x v₂
v₂ = 1.4 m / s
Answer:
<u><em>Electric Potential Energy:</em></u>
The energy that is needed to move a charge against an electric firld is called Electric Potential Energy
<u><em>Electric Potential Difference:</em></u>
The amount of work done in carrying a unit charge from one point to an other in an electric field is called Electric Potential Difference.
<u><em>Relation:</em></u>
Relation between Electric potential and electrical potential energy is given by

Here PE represents Electric potential energy
and
is Electric potential difference
it means electric potential difference is the difference in electric potential energy divided by the charge.
Heat absorbed by the solar collector = Area*Irradiance = 5.3*995 = 5273.5 W
Heat Q in joules absorbed in t hours = Heat used to heat water. That is,
5273.5*t = mCΔT; where mass = volume*density = 1*1000 = 1000 kg
Therefore;
5273.5t = 1000*4186*(65-20) = 188370000
t = 188370000/5273.5 = 35720.11 seconds = 35720.11/(60*60) hours ≈ 9.92 hours.
It will take approximately 9.92 hours.
Answer:
D
Explanation:i think but dont get mad if im wrong
Answer:
Therefore,
The magnitude of the force per unit length that one wire exerts on the other is

Explanation:
Given:
Two long, parallel wires separated by a distance,
d = 3.50 cm = 0.035 meter
Currents,

To Find:
Magnitude of the force per unit length that one wire exerts on the other,

Solution:
Magnitude of the force per unit length on each of @ parallel wires seperated by the distance d and carrying currents I₁ and I₂ is given by,

where,

Substituting the values we get


Therefore,
The magnitude of the force per unit length that one wire exerts on the other is
