Answer:
Once three protons have entered the matrix space, there is enough energy in the ATP synthase complex to synthesize one ATP. In this way, the energy in the hydrogen ion gradient is used to make ATP. ... The mitochondrial hydrogen ion gradient is generated as electrons pass through three membrane complexes.
4
N
a
+
O
2
→
2
N
a
2
O
.
By the stoichiometry of this reaction if 5 mol natrium react, then 2.5 mol
N
a
2
O
should result.
Explanation:
The molecular mass of natrium oxide is
61.98
g
⋅
m
o
l
−
1
. If
5
m
o
l
natrium react, then
5
2
m
o
l
×
61.98
g
⋅
m
o
l
−
1
=
154.95
g
natrium oxide should result.
So what have I done here? First, I had a balanced chemical equation (this is the important step; is it balanced?). Then I used the stoichiometry to get the molar quantity of product, and converted this molar quantity to mass. If this is not clear, I am willing to have another go
I don’t think you can get it for
The given alkyne is Option A 3-heptyne
<h3>
What is an Alkyne ?</h3>
The hydrocarbon having at least one C-C triple bond is called an Alkyne.
It has the general formula of
.
In the question it is being mentioned that it is an alkyne so there will be a triple bond and not a double bond.
It has been asked in the question that
CH3CH₂C ≡ CCH₂CH₂CH3 is which alkyne from the given option.
The counting of the Carbon chain is done from the left side and the Triple bond is at the 3rd Carbon , so 3-heptyne .
To know more about Alkyne
brainly.com/question/23508203
#SPJ1
<h3 />