I would say it reflects the sun easily. That’s also how we see it :)
Answer:
h = 3.1 cm
Explanation:
Given that,
The volume of a oil drop, V = 10 m
Radius, r = 10 m
We need to find the thickness of the film. The film is in the form of a cylinder whose volume is as follows :
So, the thickness of the film is equal to 3.1 cm.
<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let be the pressure at a point.
Let be the density fluid at a point.
Let be the velocity of fluid at a point.
Bernoulli's equation states that for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let be the pressure of a point just above the wing.
Let be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.
So,
Force is given by the product of pressure difference and area.
Given that area is .
So,lifting force is
Answer:
it transforms it into high carbon alloy that is harder and can be sharper but is also more brittle in the process.
Explanation:
Answer:
Minimum number of photons required is 1.35 x 10⁵
Explanation:
Given:
Wavelength of the light, λ = 850 nm = 850 x 10⁻⁹ m
Energy of one photon is given by the relation :
....(1)
Here h is Planck's constant and c is speed of light.
Let N be the minimum number of photons needed for triggering receptor.
Minimum energy required for triggering receptor, E₁ = 3.15 x 10⁻¹⁴ J
According to the problem, energy of N number of photons is equal to the energy required for triggering, that is,
E₁ = N x E
Put equation (1) in the above equation.
Substitute 3.15 x 10⁻¹⁴ J for E₁, 850 x 10⁻⁹ m for λ, 6.6 x 10⁻³⁴ J s for h and 3 x 10⁸ m/s for c in the above equation.
N = 1.35 x 10⁵