Answer:
4.9612 s
Explanation:
Applying,
T = 2π√(L/g)............... Equation 1
Where T = period of the pendulum, L = Lenght of the pendulum, g = acceleration due to gravity of the moon, π = pie.
From the question,
Given: L = 1 m, g = 1.6 m/s²
Constant: π = 3.14
Substitute these values into equation 1
T = 2×3.14×√(1/1.6)
T = 6.28√(0.625)
T = 6.28×0.79
T = 4.9612 s
Jogging side by side since the speed is equal and the direction is the same i.e same velocity
Answer:
Frequency = 3.19 * 10^14 Hz or 1/s
Explanation:
Relationship b/w frequency and wavelength can be expressed as:
C = wavelength * frequency, where c is speed of light in vacuum which is 3.0*10^8 m/s.
Now simply input value (but before that convert wavelength into meters to match the units, you do this by multiply it by 10^-9 so it will be 940*10^-9)
3.0 * 10^8 = Frequency * 940 x 10^-9
Frequency = 3.19 * 10^14 Hz or 1/s
For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
Force = (mass) x (acceleration)
Force = (18 kg) x (3 m/s²) = 54 newtons
As long as you continue pushing the cart with 54 newtons of force,
it will accelerate at 3 m/s².
At the instant you release it, or keep your hands on it but stop pushing,
it will stop accelerating. It'll continue forward at the speed it had when
the 54 newtons of force stopped.