The answer is D. The temperature obviously doesnt rise slower or faster, and if you are heating an object, it would make no sense to say that less heat is being transferred.
I believe it’s “C”
Hope that’s help you(:
Answer:
All steps are 20 * 100 (break the rest into appropriate pieces)
You can multiply as follows
(2000) * ((3 * 60) + (2 * 60) + 60)
V = 2000 * 6 * 60) = 720,000 cm^3 = .72 m^3
.72 m^3 * 2400 kg / m^3 = 1728 kg
Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N