Answer:
D. two positively charged objects
Answer:
A velocity time graph shows the change of velocity of an object with respect ot time. If the slope of the graph is increasing in the postive region, it means that the velocity is changing, if the slope is decreasing, it means the the velocity is decreasing, but the object is moving in the same direction (positve direction).
If this slope intersects the graph at x-axis, it means that the body has 0 velocity and has become still. After that, if the line enters in the negative region, it means that its velocity is started to increases again, but the body is movinging in the opposite direction (negative direction)
Answer:
Action force and Reaction force
Explanation:
The action force which is the balanced rock pushing down due to gravity and the reaction force pushing the equal amount of force. These two things are stated in Newtons third law, where he states that "Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first." Also, he states that "all forces acts in pairs," meaning that every force exerted, there is an opposite force on the first.
Answer:
the mass of water is 0.3 Kg
Explanation:
since the container is well-insulated, the heat released by the copper is absorbed by the water , therefore:
Q water + Q copper = Q surroundings =0 (insulated)
Q water = - Q copper
since Q = m * c * ( T eq - Ti ) , where m = mass, c = specific heat, T eq = equilibrium temperature and Ti = initial temperature
and denoting w as water and co as copper :
m w * c w * (T eq - Tiw) = - m co * c co * (T eq - Ti co) = m co * c co * (T co - Ti eq)
m w = m co * c co * (T co - Ti eq) / [ c w * (T eq - Tiw) ]
We take the specific heat of water as c= 1 cal/g °C = 4.186 J/g °C . Also the specific heat of copper can be found in tables → at 25°C c co = 0.385 J/g°C
if we assume that both specific heats do not change during the process (or the change is insignificant)
m w = m co * c co * (T eq - Ti co) / [ c w * (T eq - Tiw) ]
m w= 1.80 kg * 0.385 J/g°C ( 150°C - 70°C) /( 4.186 J/g°C ( 70°C- 27°C))
m w= 0.3 kg