Answer:
1. 
2. 
3. 
Explanation:
Given:
- mass of slinky,

- length of slinky,

- amplitude of wave pulse,

- time taken by the wave pulse to travel down the length,

- frequency of wave pulse,

1.



2.
<em>Now, we find the linear mass density of the slinky.</em>


We have the relation involving the tension force as:




3.
We have the relation for wavelength as:



Answer:
The linear velocity is 
Explanation:
According to the law of conservation of energy
The potential energy possessed by the hoop at the top of the inclined plane is converted to the kinetic energy at the foot of the inclined plane
The kinetic energy can be mathematically represented as

Where
is the moment of inertia possessed by the hoop which is mathematically represented as
Here R is the radius of the hoop
is the angular velocity which the hoop has at the bottom of the lower part of the inclined plane which is mathematically represented as

Where v linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface
Now expressing the above statement mathematically


=>
=> 
=> 
=> 
Substituting values


<span>A series circuit has one path for electrons, but a parallel circuit has more than one path.</span>
Answer:
m= 10 kg a = 52 m / s²
Explanation:
For this problem we must use Newton's second law, let's apply it to each axis
X axis
F - fr = ma
The equation for the force of friction is
-fr = miu N
Axis y
N- W = 0
N = mg
Let's replace and calculate laceration
F - miu (mg) = ma
a = F / m - mi g
a = 527.018 / m - 0.17 9.8
We must know the mass of the body suppose m = 10 kg
a = 527.018 / 10 - 1,666
a = 52 m / s²
Answer:
Potential gravitational energy is the energy that the body has due to the Earth's gravitational attraction. In this way, the potential gravitational energy depends on the position of the body in relation to a reference level.
Explanation: