Answer
solubility product = 3.18x 10^-7
Explanation:
We were given the pressure in torr then we need to convert to atm for consistency, ten we have
21torr/760= 0.0276315789 atm
21 Torr = .0276315789 atm
P = i M S T
M = P / iRT
Where p is osmotic pressure
T= temperature= 25C+ 273= 298K
for XY vanthoff factor i = 2
S = 0.0821 L-atm / mol K
M = .0276315789 atm / (2)(0.0821 L atm / K mole)(298 K)
M = 0.000564698046 mol/liters
solubility= 0.000564698046 mol/liters
Ksp = [X+][Y-]
Ksp = X^2
Ksp = [Sr^+2] * [SO4^-2]
Ksp = X^2
Ksp = (0.000564698046)^2
Ksp = 3.18883883 × 10-7
Ksp = 3.18x 10^-7
solubility product = 3.18x 10^-7
Therefore, the solubility product of this salt at 25 ∘C∘C is 3.18x 10^-7
Answer:
1.81 x 10²⁴ atoms
Explanation:
To find the number of atoms in the given number of moles, we need to understand that every substance contains the Avogadro's number of particles.
More appropriately, a mole of any substance will contain the Avogadro's number of particles which is 6.02 x 10²³ atoms
So;
If 1 mole of a substance = 6.02 x 10²³ atoms;
3 mole of MgCl₂ will contain 3 x 6.02 x 10²³ = 1.81 x 10²⁴ atoms
Answer: Energy of reactants = 30, Energy of products = 10
Exothermic
Activation energy for forward reaction is 10.
Explanation:
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Energy of reactants = 30
Energy of products = 10
Thus as energy of the product < energy of the reactant, the reaction is exothermic.
Activation energy
is the extra energy that must be supplied to reactants in order to cross the energy barrier and thus convert to products.
for forward reaction is (40-30) = 10.
500 meters is the correct answer :)
To find them you would have numbers of the elements in percentage or grams then you divide them by their molar mass to get their moles. From there you divide by the smallest number. Round it to two or one sig fig. If you have a number that is for ex. 2.5 you multiply it by 2 to make it whole as well the other whole numbers. Then to find the molecular formula the problem must give you another molar mass and using your empirical formula convert it to its molar mass then you divide them, larger number over smaller number. You should get a number round it to 1 sig fig. Now you use that number and multiply the subscripts on the empirical formula to get the molecular formula.