The mixture flow rate in lbm/h = 117.65 lbm/h
<h3>Further explanation</h3>
Given
15.0 wt% methanol
The flow rate of the methyl acetate :100 lbm/h
Required
the mixture flow rate in lbm/h
Solution
mass of methanol(CH₃OH, Mw= 32 kg/kmol) in mixture :
mass of the methyl acetate(C₃H₆O₂,MW=74 kg/kmol,85% wt) in 200 kg :
Flow rate of the methyl acetate in the mixture is to be 100 lbm/h.
1 kg mixture = 0.85 .methyl acetate
So flow rate for mixture :
Answer:
6,8 g
Explanation:
c = 4.18 J/(g * °C) = 4180 J / (kg * °C)
= 25 °C
= 36,4 °C
Q = 325 J
The formula is: Q = c * m * ()
m =
Calculating:
m = 325 / 4180 * (36,4 - 25) ≈ 0,0068 kg = 6,8 g
Answer:
Manganese: Mn
Explanation:
The elestron configuration would show this is 25 electrons
Atomic number : 25
this electron configuration ends in
half of the d subshell which is 10
Answer:
The unknown solution had the higher concentration.
Explanation:
When two solutions are separated by a semi-permeable membrane, depending on the concentration gradient between the two solutions, there is a tendency for water molecules to move across the semi-permeable in order to establish an equilibrium concentration between the two solutions. This movement of water molecules across a semi-permeable membrane in response to a concentration gradient is known as osmosis. In osmosis, water molecules moves from a region of lower solute concentration or higher water molecules concentration to a region of higher solute concentration or lower water molecules concentration until equilibrium concentration is attained.
Based on the observation that when the glucose solution described in part A is connected to an unknown solution via a semipermeable membrane, the unknown solution level rises, it means that water molecules have passed from the glucose solution through the semipermeable membrane into the unknown solution. Therefore, the solution has a higher solute concentration than the glucose solution.