Answer:
8.28 MPa
Explanation:
From the question given above, the following data were obtained:
Radius (r) = 2×10¯³ m
Force applied (F) = 104 N
Pressure (P) =?
Next, we shall determine the area of the nail (i.e circle). This can be obtained as follow:
Radius (r) = 2×10¯³ m
Area (A) of circle =?
Pi (π) = 3.14
A = πr²
A = 3.14 × (2×10¯³)²
A = 3.14 × 4×10¯⁶
A = 1.256×10¯⁵ m²
Next, we shall determine the pressure. This can be obtained as follow:
Force applied (F) = 104 N
Area (A) = 1.256×10¯⁵ m²
Pressure (P) =?
P = F / A
P = 104 / 1.256×10¯⁵
P = 8280254.78 Nm¯²
Finally, we shall convert 8280254.78 Nm¯² to MPa. This can be obtained as follow:
1 Nm¯² = 1×10¯⁶ MPa
Therefore,
8280254.78 Nm¯² = 8280254.78 Nm¯² × 1×10¯⁶ MPa / 1 Nm¯²
8280254.78 Nm¯² = 8.28 MPa
Thus, the pressure exerted on the wall is 8.28 MPa
Answer:
Explanation:
Iodine - 125
The atomic symbol of iodine is ¹²⁵₅₃ I
The symbol for iodine is I
The atomic number of iodine is 53,
and the atomic mass of iodine is 125 .
<u>The representation of the atomic symbol is as, the atomic mass is written in uppercase and the atomic number is written in lower case , followed by the symbol of the element .</u>
Iodine is a radio active element , used for many biological process .
It is the second largest -lived radioisotope of iodine .
The first is iodine-129 .
Answer: 3.72 M
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = age of sample = 15.0 minutes
a = let initial amount of the reactant = 10.0 M
a - x = amount left after decay process = ?




The concentration of
in a solution after 15.0 minutes have passed is 3.72 M