1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dennis_Churaev [7]
3 years ago
15

HELP _7. All of the following except which would lead to an INCREASE in friction?

Engineering
1 answer:
Viktor [21]3 years ago
7 0
I think the answer is C
You might be interested in
Side milling cutter is an example of ______ milling cutter.
dusya [7]

Answer:

special type

Explanation:

As per the classification of milling cutters. This cutter can handle deep and long open slots in a more comfortable manner, which increase the productivity.

6 0
3 years ago
A continuous random variable, X, whose probability density function is given by f(x) = ( λe−λx , if x ≥ 0 0, otherwise is said t
Ganezh [65]

Answer:

a) F(x) = \lambda \int_0^{\infty} e^{-\lambda x} dx= -e^{-\lambda x} \Big|_0^{\infty} = 1- e^{-\lambda x} \

b) P(10 < X

Explanation:

Previous concepts

The cumulative distribution function (CDF) F(x),"describes the probability that a random variableX with a given probability distribution will be found at a value less than or equal to x".

The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution".

Part a

Let X the random variable of interest. We know on this case that X\sim Exp(\lambda)

And we know the probability denisty function for x given by:

f(x) = \lambda e^{-\lambda x} , x\geq 0

In order to find the cdf we need to do the following integral:

F(x) = \lambda \int_0^{\infty} e^{-\lambda x} dx= -e^{-\lambda x} \Big|_0^{\infty} = 1- e^{-\lambda x} \

Part b

Assuming that X \sim Exp(\lambda =0.1), then the density function is given by:

f(x) = 0.1 e^{-0.1 x} dx , x\geq 0

And for this case we want this probability:

P(10 < X

And evaluating the integral we got:

P(10 < X

4 0
4 years ago
In an orthogonal cutting operation, the tool has a rake angle = 12°. The chip thickness before the cut = 0.32 mm and the cut yie
Snezhnost [94]

Answer:

The shear plane angle and shear strain are 28.21° and 2.155 respectively.

Explanation:

(a)

Orthogonal cutting is the cutting process in which cutting direction or cutting velocity is perpendicular to the cutting edge of the part surface.  

Given:  

Rake angle is 12°.  

Chip thickness before cut is 0.32 mm.

Chip thickness is 0.65 mm.  

Calculation:  

Step1  

Chip reduction ratio is calculated as follows:  

r=\frac{t}{t_{c}}

r=\frac{0.32}{0.65}

r = 0.4923

Step2  

Shear angle is calculated as follows:  

tan\phi=\frac{rcos\alpha}{1-rsin\alpha}

Here, \phi is shear plane angle, r is chip reduction ratio and \alpha is rake angle.  

Substitute all the values in the above equation as follows:  

tan\phi=\frac{rcos\alpha}{1-rsin\alpha}

tan\phi=\frac{0.4923cos12^{\circ}}{1-0.4923sin12^{\circ}}

tan\phi=\frac{0.48155}{0.8976}

\phi=28.21^{\circ}

Thus, the shear plane angle is 28.21°.

(b)

Step3

Shears train is calculated as follows:

\gamma=cot\phi+tan(\phi-\alpha)

\gamma=cot28.21^{\circ}+tan(28.21^{\circ}-12^{\circ})\gamma = 2.155.

Thus, the shear strain rate is 2.155.

6 0
3 years ago
What is the definition of a duty cycle?
ira [324]

Answer:

D=\frac{PW}{T}*100

Explanation:

In electrical terms, is the ratio of time in which a load or circuit is ON compared to the time in which the load or circuit is OFF.

The duty cycle or power cycle, is expressed as a percentage of the activation time. For example, a 70% duty cycle is a signal that 70% of the time is activated and the other 30% disabled. Its equation can be expressed as:

D=\frac{PW}{T}*100

Where:

D=Duty\hspace{3}Cycle

PW=Pulse\hspace{3}Active\hspace{3}Time

T=Period\hspace{3}of\hspace{3}the\hspace{3}Signal

Here is a picture that will help you understand these concepts.

5 0
3 years ago
Your family has asked you to estimate the operating costs of your clothes dryer for the year. The clothes dryer in your home has
trasher [3.6K]

Answer:

The costs to run the dryer for one year are $ 9.03.

Explanation:

Given that the clothes dryer in my home has a power rating of 2250 Watts, and to dry one typical load of clothes the dryer will run for approximately 45 minutes, and in Ontario, the cost of electricity is $ 0.11 / kWh, to calculate the costs to run the dryer for one year the following calculation must be performed:

1 watt = 0.001 kilowatt

2250/45 = 50 watts per minute

45 x 365 = 16,425 / 60 = 273.75 hours of consumption

50 x 60 = 300 watt = 0.3 kw / h

0.3 x 273.75 = 82.125

82.125 x 0.11 = 9.03

Therefore, the costs to run the dryer for one year are $ 9.03.

8 0
3 years ago
Other questions:
  • The following C program asks the user for two input null-terminated strings, each stored in uninitialized 100-byte buffer, and c
    6·1 answer
  • Can anybody teach me how to make an app with flask and pygame together?​
    10·1 answer
  • Which of the following describes fibers? a)- Single crystals with extremely large length-to-diameter ratios. b)- Polycrystalline
    10·1 answer
  • Harmony in music is characterized by _____.
    14·2 answers
  • Water flowing through both a small pipe and a large pipe can fill a water tank in 4 hours. Water flowing through the small pipe
    5·1 answer
  • Four subjects civil engineers need to study​
    12·1 answer
  • Solve the inequality. Then graph your solution.<br> -9v – 10 &lt; 7y +6
    14·1 answer
  • Physical properties of minerals
    10·2 answers
  • The team needs to choose a primary view for the part drawing. Three team members make suggestions:
    10·1 answer
  • Technician a s ays a shorted circuit can generate excessive heat. technician b says a shorted circuit will cause the circuit pro
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!