Answer:
Basically there are two principal differences between the convection and conduction heat transfer
Explanation:
The conduction heat transfer is referred to the transfer between two solids due a temperature difference, while for, the convective heat transfer is referred to the transfer between a fluid (liquid or gas) and a solid. Also, they used different coefficients for its calculation.
We can include on the explanation that conduction thermal transfer is due to temperature difference, while convection thermal transfer is due to density difference.
Answer:
809.98°C
Explanation:
STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.
Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.
Biot value = (220 × 0.1)÷ 110 = 0.2.
Biot value = 0.2.
STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;
Fourier number = thermal diffusivity × time ÷ (length)^2.
Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.
STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.
Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.
= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.
Answer:
52, 50, 54, 54, 56
Explanation:
The "stem" in this scenario is the tens digit of the number. Each "leaf" is the ones digit of a distinct number with the given tens digit.
5 | 20446 represents the numbers 52, 50, 54, 54, 56
Answer:
A fluid flowing along a flat plate will stick to it at the point of contact
Explanation:
and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.