1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikitich [7]
3 years ago
5

Hey any one ride dirtbikes here

Engineering
2 answers:
AveGali [126]3 years ago
4 0
Yeah why I have to give 20 words though so I'm talk a bunch please give brainly some troll keeps taking my points and giving fake answers
Serga [27]3 years ago
3 0

Answer:

Yes all the time

Explanation:

You might be interested in
A silicon carbide plate fractured in bending when a blunt load was applied to the plate center. The distance between the fractur
Amanda [17]

Question in order:

A silicon carbide plate fractures in bending when a blunt load was applied to the plate center. The distance between the fracture origin and the mirror/mist boundary on the fracture surface was 0.796 mm. To determine the stress used to break the plate, three samples of the same material were tested and produced the following. What is the estimate of the stress present at the time of fracture for the original plate?

Mirror Radius (mm) Bending Failure Stress (MPa)

0.603                         225

0.203                         368

0.162                         442

Answer:

191 MPa

Explanation:

Failure stress of bending is Inversely proportional to the mirror radius

Bending Stress = \frac{1}{(Mirror Radius)^{n}}

At mirror radius 1 = 0.603 mm   Bending stress 1 = 225 Mpa..............(1)

At mirror radius 2 = 0.203 mm  Bending stress 2 = 368 Mpa...............(2)

At mirror radius 3 = 0.162 mm   Bending stress 3 = 442 Mpa...............(3)

comparing case 1 and 2 using the above equation

\frac{Stress 1}{Stress 2} = ({\frac{Radius 2}{Radius 1}})^{n_1}

\frac{225}{368} = ({\frac{0.203}{0.603}})^{n_1}

0.6114 = (0.3366)^{n_1}

Taking the natural logarithm of both side

ln(0.6114) = n ln(0.3366)

n₁ = ln(0.6114)/ln(0.3366)

n₁ = 0.452

comparing case 2 and 3 using the above equation

\frac{Stress 2}{Stress 3} = ({\frac{Radius 3}{Radius 2}})^{n_2}

\frac{368}{442} = ({\frac{0.162}{0.203}})^{n_2}

0.8326 = (0.7980)^{n_2}

Taking the natural logarithm of both side

ln(0.8326) = n ln(0.7980)

n₂ = ln(0.8326)/ln(0.7980)

n₂ = 0.821

comparing case 1 and 3 using the above equation

\frac{Stress 1}{Stress 3} = ({\frac{Radius 3}{Radius 1}})^{n_3}

\frac{225}{442} = ({\frac{0.162}{0.603}})^{n_3}

0.5090 = (0.2687)^{n_3}

Taking the natural logarithm of both side

ln(0.5090) = n ln(0.2687)

n₃ = ln(0.5090)/ln(0.2687)

n₃ = 0.514

average for n

n = \frac{n_1 + n_2 + n_3}{3}

n = \frac{0.452 +0.821 + 0.514}{3}

n = 0.596

Hence to get bending stress x at mirror radius 0.796

\frac{Stress x}{Stress 3} = ({\frac{Radius 3}{Radius x}})^{0.596}

\frac{Stress x}{225} = ({\frac{0.603}{0.796}})^{0.596}

\frac{Stress x}{225} = 0.8475

stress x = 191 MPa

3 0
3 years ago
A coal-burning power plant generates electrical power at a rate of 650 megawatts (MW), or 6.50 × 108 J/s. The plant has an overa
Vinvika [58]

Answer:

Energy produce in one year =20.49 x 10¹⁶ J/year

Explanation:

Given that

Plant produce 6.50 × 10⁸ J/s of energy.

It produce  6.50 × 10⁸ J in 1 s.

We know that

1 year = 365 days

1 days = 24 hr

1 hr = 3600 s

1 year = 365 x 24 x 3600 s

1 year = 31536000 s

So energy produce in 1 year = 31536000 x  6.50 × 10⁸ J/year

          Energy produce in one year = 204984 x 10¹² J/year

          Energy produce in one year =20.49 x 10¹⁶ J/year

7 0
3 years ago
Three capillary tubes with different radius (r1=1.0mm, r2=0.1mm, r3=0.01mm) are inserted into the same cup of water. The surface
kobusy [5.1K]

Answer:

you fgykyiihohuoououu

Explanation:

jjj

4 0
3 years ago
The best way to identify common masonry problems is to call the engineer.<br> True or False
Daniel [21]

Answer:

True

Explanation:

5 0
3 years ago
A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp
cricket20 [7]

Answer:

Given that;

Jello there, see explanstion for step by step solving.

A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.

Explanation:

A horizontal channel of height H has two fluids of different viscosities and densities flowing because of a pressure gradient dp/dx1. Find the velocity profiles of two fluids if the height of the flat interface is ha.

See attachment for more clearity

6 0
3 years ago
Other questions:
  • For a bronze alloy, the stress at which plastic deformation begins is 297 MPa and the modulus of elasticity is 113 GPa. (a) What
    7·1 answer
  • 1)A wheel is used to turn a valve stem on a water valve. If the wheel radius is 1 foot and the stem, (axle), radius is .5 inches
    10·1 answer
  • Determine the design angle ϕ (0∘≤ϕ≤90 ∘) between struts AB and AC so that the 400 lb horizontal force has a component of 600 lb
    10·1 answer
  • Given two alphabet strings str1 and str2. You can change the characters in str1 to any alphabet characters in order to transform
    8·1 answer
  • 1) Each of the following would be considered company-confidential except
    10·1 answer
  • Before turning in a test, it would be best to
    6·2 answers
  • When does someone's work on the Internet become copyrighted?
    15·1 answer
  • A spherical metal ball of radius r_0 is heated in an oven to a temperature of T_1 throughout and is then taken out of the oven a
    6·1 answer
  • Which type of system is being researched to deliver power to several motors to drive multiple systems in vehicles?
    10·1 answer
  • Can you help me with this task/homework.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!