Answer:
8400m
Explanation:
The engine that falls off would have the same constant horizontal velocity as the airplane's when if falls off if we ignore air resistance. So it would have a horizontal velocity of 280m/s for 30seconds before it hits the ground.
Therefor the horizontal distance the engine travels during its fall is
280 * 30 = 8400m
Answer:
a) t = 4.16 s
b) x = 141.51 m
Explanation:
Given
v = 21.5 m/s
x0 = 52.0 m
a = 6.0 m/s²
a) Motorcycle
x = v0*t + (a*t²/2)
x = 21.5t + (6*t²/2)
x = 21.5t + 3t² <em>(I)</em>
Car
x = x0 + v0*t
x = 52 + 21.5t <em>(II)</em>
<em />
then we can apply <em>I = II</em>
21.5t + 3t² = 52 + 21.5t
⇒ 3t² = 52
⇒ t = 4.16 s
b) We can use <em>I</em> or <em>II</em>, then
x = 52 + 21.5*(4.16)
⇒ x = 141.51 m
<span>Answer:
Using 1/f = 1/d' + 1/d ...(where d' object distance and d is image distance)
1/4 = 1/7 + 1/d
1/4 - 1/7 = 1/d
3/28 = 1/d
d = 28/3
d = 9.33 cm</span>
Answer:
The average impact force is 12000 newtons.
Explanation:
By Impact Theorem we know that impact done by the sledge hammer on the chisel is equal to the change in the linear momentum of the former. The mathematical model that represents the situation is now described:
(1)
Where:
- Average impact force, in newtons.
- Duration of the impact, in seconds.
- Mass of the sledge hammer, in kilograms.
,
- Initial and final velocity, in meters per second.
If we know that
,
,
and
, then we estimate the average impact force is:


The average impact force is 12000 newtons.