Answer:
Explanation:
412 ATP's will be generated from the complete metabolic oxidation of tripalmitin (tripalmitoylglycerol)
130 ATP from the oxidation of palmitate
22 ATP from the oxidation of glycerol
Altogether 130 + 22 = 412 ATP will be produced.
Here in case of tripalmitin (tripalmitoylglycerol), we have 51 carbons.
When 51 carbons can produce 412 ATPs
Then 1 carbon will produce how many ATPs = 412 ATPs/ 51 carbon= 8.1 ATPs.
This shows that ATP yield per carbon often oxidized will be 8.1 ATPs
Now we will see the ATP yield in the case of glucose.
Glucose is made up of 6 carbon and complete oxidation of glucose will produce 38 ATPs
When 6 carbons can yield 38 ATPs
Then 1 carbon can yield how many ATPs= 38 ATPs/ 6 carbons= 6.33 ATPs.
So, ATP yield per carbon in case of glucose will be 6.33 ATPs
German scientist Döbereiner was one responsible for grouping elements into triads based on most notably atomic mass, many of which can be found in the periodic table to be in a pattern (for example <span><span>Iron </span><span>Cobalt </span><span>Nickel, elements 26, 27, 28)</span></span>
I believe your answer is 23.
Credit: answers.yahoo.com
Hope this helps!
You can automatically rule out CH₄ since it has no lone pairs at all around the central atom. Water has 2. Ammonia is the only Lewis structure that contains one lone pair.
Answer:
Ok so, b. A redox reaction occurs in an electrochemical cell, where silver (Ag) is oxidized and nickel (Ni) is reduced - In voltaic cells, also called galvanic cells, oxidation occurs at the anode and reduction occurs at the cathode. A mnemonic for this is "An Ox. Red Cat." So since silver is oxidized, the silver half-cell is the anode. And the nickel half-cell is the cathode...
i. Write the half-reactions for this reaction, indicating the oxidation half-reaction and the reduction half-reaction- The substance having highest positive  potential will always get reduced and will undergo reduction reaction. Here, zinc will always undergo reduction reaction will get reduced
ii. Which metal is the anode, and which is the cathode?-The anode is where the oxidation reaction takes place. In other words, this is where the metal loses electrons. The cathode is where the reduction reaction takes place.
iii. Calculate the standard potential (voltage) of the cell
Look up the reduction potential,
E
⁰
red
, for the reduction half-reaction in a table of reduction potentials
Look up the reduction potential for the reverse of the oxidation half-reaction and reverse the sign to obtain the oxidation potential. For the oxidation half-reaction,
E
⁰
ox
=
-
E
⁰
red
.
iv. What kind of electrochemical cell is this? Explain your answer.
All parts in the electrochemical cells are labeled in second figure. Following are the part in electrochemical cells
1) Anode 2) Cathode 3) gold Stripe (Electrode) 4) Aluminium Glasses (Electrode) 5) Connecting wires 6) Battery
Explanation: