Answer:
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Explanation:
Chemical equation:
HNO₃ + NaOH → NaNO₃ + H₂O
Balanced chemical equation:
HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(l)
Total Ionic equation:
H⁺(aq) + NO₃⁻ (aq) + Na⁺(aq) + OH⁻(aq) → H₂O(l) + Na⁺(aq) + NO₃⁻ (aq)
Net ionic equation:
H⁺(aq) + OH⁻(aq) → H₂O(l)
The NO₃⁻ (aq) and Na⁺ (aq) are spectator ions that's why these are not written in net ionic equation. The water can not be splitted into ions because it is present in liquid form.
Spectator ions:
These ions are same in both side of chemical reaction. These ions are cancel out. Their presence can not effect the equilibrium of reaction that's why these ions are omitted in net ionic equation
Answer: The number 4 indicates 4 electrons.
Explanation: We are given an electronic configuration, which is:

Here,
- The letters denote the sub-shells of an element.
- The numbers written before the letters which are 1, 2 and 2 represents the Principle Quantum Number and these represents the energy level of the sub-shells.
- The number which are written in the superscripts which are 2, 2 and 4 denotes the electrons which are present in the sub-shell.
Hence, 4 indicates 4 electrons present in 2p sub-shell.
A word equation is a chemical reaction described using words.
A common example is the act of photosynthesis - the process plants use to make glucose (sugar) to use as 'food'.
Plants convert water and carbon dioxide into oxygen and glucose.
A word equation to express this is:
Water + Carbon Dioxide → Glucose + Oxygen
The other type of equation is a symbol equation - this uses the symbols of the elements instead of the common names:
H₂O + CO₂ → C₆H₁₂O₆ + O₂
There is also a balanced version:
6H₂O + 6CO₂ → C₆H₁₂O₆ + 6O₂
<em>If you want information on the balanced symbol equations, feel free to PM me.</em>
Answer:
Molecules in liquids are held to other molecules by intermolecular interactions, which are weaker than the intramolecular interactions that hold the atoms together within molecules and polyatomic ions.