1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnom [1K]
3 years ago
10

What is the definition of a sheet metal tab?

Engineering
2 answers:
Sedbober [7]3 years ago
7 0
The depth of a Tab feature is automatically set to the thickness of the sheet metal part. The direction of the depth automatically coincides with the sheet metal part to prevent a disjoint body.
pickupchik [31]3 years ago
6 0

Answer:

Sheet metal tabs are reflected in the model and in the flat pattern.

Explanation:

You might be interested in
What are the Basic requirements of drinking Water ?
iragen [17]

Answer:

1) free of contaminants, 2) alkaline, and 3) micro-clustered

Explanation:

Hope it helps you

4 0
3 years ago
What type of engineer works to create a practical and safe energy source?
Fittoniya [83]
Why did you put this on here when you know the answer lol
4 0
3 years ago
A person walks into a refrigerated warehouse with head uncovered. Model the head as a 25- cm diameter sphere at 35°C with a surf
galina1969 [7]

Answer:

Hello some parts of your question is missing below is the missing part

Convection coefficient = 11 w/m^2. °c

answer : 44.83 watts

Explanation:

Given data :

surface emissivity ( ε )= 0.95

head ( sphere) diameter( D )  = 0.25 m

Temperature of sphere( T )  = 35° C

Temperature of surrounding ( T∞ )  = 25°C

Temperature of surrounding surface ( Ts ) = 15°C

б  = ( 5.67 * 10^-8 )

Determine the total rate of heat loss

First we calculate the surface area of the sphere

As = \pi D^{2}  

= \pi * 0.25^2 =  0.2 m^2

next we calculate heat loss due to radiation

Qrad = ε * б * As( T^{4} - T^{4} _{s} )  ---- ( 1 )

where ;

ε = 0.95

б = ( 5.67 * 10^-8 )

As = 0.2 m^2

T = 35 + 273 = 308 k

Ts = 15 + 273 = 288 k

input values into equation 1

Qrad = 0.95 * ( 5.67 * 10^-8 ) * 0.2 ( (308)^4 - ( 288)^4 )

         = 22.83  watts

Qrad ( heat loss due to radiation ) = 22.83 watts

calculate the heat loss due to convection

Qconv = h* As ( ΔT )

           = 11*0.2 ( 35 -25 )  = 22 watts

Hence total rate of heat loss

=  22 + 22.83

= 44.83 watts

5 0
3 years ago
Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
Dafna11 [192]

Answer:

\mathbf{h_2 =1021.9 \  mm}

Explanation:

Given that :

The initial volume of water V_1 = 1000.00 mL = 1000000 mm³

The initial temperature of the water  T_1 = 10° C

The height of the water column h = 1000.00 mm

The final temperature of the water T_2 = 70° C

The coefficient of thermal expansion for the glass is  ∝ = 3.8*10^{-6 } mm/mm  \ per ^oC

The objective is to determine the the depth of the water column

In order to do that we will need to determine the volume of the water.

We obtain the data for physical properties of water at standard sea level atmospheric from pressure tables; So:

At temperature T_1 = 10 ^ 0C  the density of the water is \rho = 999.7 \ kg/m^3

At temperature T_2 = 70^0 C  the density of the water is \rho = 977.8 \ kg/m^3

The mass of the water is  \rho V = \rho _1 V_1 = \rho _2 V_2

Thus; we can say \rho _1 V_1 = \rho _2 V_2;

⇒ 999.7 \ kg/m^3*1000 \ mL = 977.8 \ kg/m^3 *V_2

V_2 = \dfrac{999.7 \ kg/m^3*1000 \ mL}{977.8 \ kg/m^3 }

V_2 = 1022.40 \ mL

v_2 = 1022400 \ mm^3

Thus, the volume of the water after heating to a required temperature of  70^0C is 1022400 mm³

However; taking an integral look at this process; the volume of the water before heating can be deduced by the relation:

V_1 = A_1 *h_1

The area of the water before heating is:

A_1 = \dfrac{V_1}{h_1}

A_1 = \dfrac{1000000}{1000}

A_1 = 1000 \ mm^2

The area of the heated water is :

A_2 = A_1 (1  + \Delta t  \alpha )^2

A_2 = A_1 (1  + (T_2-T_1) \alpha )^2

A_2 = 1000 (1  + (70-10) 3.8*10^{-6} )^2

A_2 = 1000.5 \ mm^2

Finally, the depth of the heated hot water is:

h_2 = \dfrac{V_2}{A_2}

h_2 = \dfrac{1022400}{1000.5}

\mathbf{h_2 =1021.9 \  mm}

Hence the depth of the heated hot  water is \mathbf{h_2 =1021.9 \  mm}

4 0
3 years ago
Why do y'all boys be so toxic and fake?
AVprozaik [17]

Answer: I'm a boy, but I'm not toxic or fake

Explanation:

5 0
3 years ago
Read 2 more answers
Other questions:
  • Millions of years ago, the Sierra Nevada region began to be uplifted along a crack in Earth's crust. The region on the other sid
    14·1 answer
  • Select the material used to clean a prototype board before soldering.
    5·1 answer
  • A cylindrical specimen of a hypothetical metal alloy is stressed in compression. If its original and final diameters are 30.00 a
    14·1 answer
  • Explain how a CO2 cartridge powers the dragster you will be building. A good website to use is How Stuff Works. (howstuffworks.c
    5·2 answers
  • A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
    15·1 answer
  • What are four engineering degrees that can help lead you to becoming an aerospace engineer
    6·1 answer
  • Suppose you were a heating engineer and you wished to consider a house as a dynamic system. Without a heater, the average temper
    6·1 answer
  • Write a program to calculate overtime pay of 10 employees. Overtime is paid at the rate of Rs. 12.00
    13·1 answer
  • Best budget freestyle drone?
    6·1 answer
  • How do i do this? if y’all don’t mind helping lol
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!