Half-life is defined as the amount of time it takes a given quantity to decrease to half of its initial value. The equation to describe the decay is
Nt=N0(1/2)

where N0 is the initial quantity, Nt is the remaining quantity after time t, t1/2 is the half-time. So work out the equation, t1/2 = t (-ln2)/ln(Nt/N0) = 11.5*(-ln2)/ln(12.5/100) = 3.83 days
The question is incomplete, here is a complete question.
An arctic weather balloon is filled with 27.8 L of helium gas inside a prep shed. The temperature inside the shed is 13 ⁰C. The balloon is then taken outside, where the temperature is -9 ⁰C. Calculate the new volume of the balloon. You may assume the pressure on the balloon stays constant at exactly 1 atm. Be sure your answer has the correct number of significant digits.
Answer : The new volume of the balloon is 25.7 L
Explanation :
Charles's Law : It is defined as the volume of the gas is directly proportional to the temperature of the gas at constant pressure and number of moles.

or,

where,
= initial volume of gas = 27.8 L
= final volume of gas = ?
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Therefore, the new volume of the balloon is 25.7 L
Answer : The balanced equations will be:

Explanation :
The general rate of reaction is,

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
![\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20A%7D%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20B%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20C%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20D%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
![Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
Now we have to determine the balanced equations corresponding to the following rate expressions.
![Rate=-\frac{d[CH_4]}{dt}=-\frac{1}{2}\frac{d[O_2]}{dt}=+\frac{1}{2}\frac{d[H_2O]}{dt}=+\frac{d[CO_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BCH_4%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BCO_2%5D%7D%7Bdt%7D)
The balanced equations will be:

56km/s is 201600m/hr to its equivalent.
<span>Answer is: Van't Hoff factor
(i) for this solution is 1.051 .
Change in boiling point from pure solvent to solution: ΔT
=i · Kb · b.
Kb - </span><span>molal boiling point elevation constant</span><span> is 0.512°C/m.
b - molality, moles of solute per kilogram of solvent.
b = 1.26 m.
ΔT = 101.63°C - 100</span>°C = 1.63°C.
i = 1.63°C ÷ (0.512°C/m · 1.26 m).
i = 1.051.