Answer:
2.03 x 10²⁴N
Explanation:
Given parameters:
Mass of moon = 7.34 x 10²²kg
Mass of the earth = 5.97 x 10²⁴kg
Distance = 3.8 x 10⁵km
Unknown:
Gravitational force of attraction = ?
Solution:
To find the gravitational force of attraction between the masses, we use the expression below;
F =
G is the universal gravitation constant
m is the mass
1 and 2 represents moon and earth
r is the distance
F =
F =
= 2.03 x 10²⁴N
The capacitor is used to store electric charge.That is what makes capacitors special. <span>
The charge that flows into the capacitor is stored on the plate of the capacitor that the source voltage is connected to. </span>When current flows into a capacitor, the charges get “stuck” on the plates because they can’t get past the insulating dielectric. One plate is positively charged and the other negatively <span>The stationary charges on these plates create an </span>electric field. <span>When charges group together on a capacitor like this, the cap is storing electric energy just as a battery might store chemical energy.</span>
Not if both speeds are in the same units.
However, if the 254 is 'centimeters per time' and the 100 is 'inches per time',
then the speeds are equal.
The 'formulas' to use are just the definitions of 'power' and 'work':
Power = (work done) / (time to do the work)
and
Work = (force) x (distance) .
Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.
Power = (force x distance) / (time)
From the sheet, we know the power, the distance, and the time. So we can use this one formula to find the force.
Power = (force x distance) / (time)
Multiply each side by (time): (Power) x (time) = (force) x (distance)
Divide each side by (distance): Force = (power x time) / (distance).
Look how neat, clean, and simple that is !
Force = (13.3 watts) x (3 seconds) / (4 meters)
Force = (13.3 x 3 / 4) (watt-seconds / meter)
Force = 39.9/4 (joules/meter)
<em>Force = 9.975 Newtons</em>
Is that awesome or what !