Answer:
The total displacement of the car is 2 meters south
Explanation:
As the car went south 10m, and then went back over it initial path for 8 meters, the actual distance registered in the car's odometer will be 18 m, but as far as vector displacement in its final position, this will be 2 meters south (10m -8m=2m).
Notice that the displacement vector is defined as the final position minus the initial position, which gives a distance of 2 from the origin, in the suoth direction.meters
Answer:
462 nm
Explanation:
Given: width of the slit, d = 5.6 × 10⁻⁴ m
Distance of the screen, D = 4.0 m
Fringe width, β = 3.3 mm = 3.3 × 10⁻³ m
First dark fringe means n =1
Wavelength of the light, λ = ?
Answer:
a. The moment of the 4 N force is 16 N·m clockwise
b. The moment of the 6 N force is 12 N·m anticlockwise
Explanation:
In the figure, we have;
The distance from the point 'O', to the 6 N force = 2 m
The position of the 6 N force relative to the point 'O' = To the left of 'O'
The distance from the point 'O', to the 4 N force = 4 m
The position of the 4 N force relative to the point 'O' = To the right of 'O'
a. The moment of a force about a point, M = The force, F × The perpendicular distance of the force from the point
a. The moment of the 4 N force = 4 N × 4 m = 16 N·m clockwise
b. The moment of the 6 N force = 6 N × 2 m = 12 N·m anticlockwise.
A concave lens can only form a virtual image. The correct option among all the options that are given in the question is the third option or option "C". Concave lenses are mostly thinner in the middle compared to its edges. I hope that this answer has come to your help.
Answer:
88.3
Explanation:
Emf in a rotating coil is given by rate of change of flux:
E= dФ/dt=(NABcos∅)/ dt
N: number of turns in the coil= 80
A: area of the coil= 0.25×0.40= 0.1
B: magnetic field strength= 1.1
Ф: angle of rotation= 90- 37= 53
dt= 0.06s
E= (80 × 0.4× 0.25×1.10 × cos53)/0.06= 88.3V