Answer:
atomic number- 42
chemical number- 96
number of protons-18
atomic mass-96
number of eletrons-42
number of valence eletrons- 1, 2, 13, or 18. (sorry i forgot)
nummber of shells in n=3 shell-18
number of neutrons-54
Explanation:
well i just know the periodic table by heart and thats how i got the answer XD
You are using the internet right now. The question told you not to. Lol
Answer:
A pH indicator is a halochromic chemical compound added in small amounts to a solution so the pH (acidity or basicity) of the solution can be determined visually. Hence, a pH indicator is a chemical detector for hydronium ions (H3O+) or hydrogen ions (H+) in the Arrhenius model.A pH of 7 indicates a neutral solution like water. A pH less than 7 indicates an acidic solution and a pH greater than 7 indicates a basic solution. Ultimately, the pH value indicates how much H+ has dissociated from molecules within a solution. The lower the pH value, the higher concentration of H+ ions in the solution and the stronger the acid. Likewise, the higher the pH value, the lower the concentration of H+ ions in the solution and the weaker the acid.
Explanation:
Answer:- 10 L of ethane.
Solution:- The given balanced equation is:

From this equation, ethane and oxygen react in 2:7 mol ratio, the ratio of volumes would also be same if they are at same temperature and pressure.
Since 14 L of each gas are taken, the oxygen will be the limiting reactant and ethane will be the excess reactant. Let's calculate the volume of ethane used:

= 
From above calculations, 4 L of ethane are used. So, excess volume of ethane left after the completion of reaction = 14 L - 4 L = 10 L
Hence, 10 L of ethane will be remaining.
Answer:
27 liters of hydrogen gas will be formed
Explanation:
Step 1: Data given
Number of moles C = 1.03 moles
Pressure H2 = 1.0 atm
Temperature = 319 K
Step 2: The balanced equation
C +H20 → CO + H2
Step 3: Calculate moles H2
For 1 mol C we need 1 mol H2O to produce 1 mol CO an 1 mol H2
For 1.03 moles C we'll have 1.03 moles H2
Step 4: Calculate volume H2
p*V = n*R*T
⇒with p = the pressure of the H2 gas = 1.0 atm
⇒with V = the volume of H2 gas = TO BE DETERMINED
⇒with n = the number of moles H2 gas = 1.03 moles
⇒with R = the gas constant = 0.08206 L*Atm/mol*K
⇒with T = the temperature = 319 K
V = (n*R*T)/p
V = (1.03 * 0.08206 *319) / 1
V = 27 L
27 liters of hydrogen gas will be formed