We have to find the resistance.
V = 12
A = 2
R = ?
And then we divide it to find r.
12/2 = 6 ohm's.
Answer:
801.1 kJ
Explanation:
The ice increases in temperature from -20 °C to 0 °C and then melts at 0 °C.
The heat required to raise the ice to 0 °C is Q₁ = mc₁Δθ₁ where m = mass of ice = 1 kg, c₁ = specific heat capacity of ice = 2108 J/kg°C and Δθ₁ = temperature change. Q₁ = 1 kg × 2108 J/kg°C × (0 - (-20))°C = 2108 J/kg°C × 20 °C = 4216 J
The latent heat required to melt the ice is Q₂ = mL₁ where L₁ = specific latent heat of fusion of ice = 336000 J/kg. Q₁ = 1 kg × 336000 J/kg = 336000 J
The heat required to raise the water to 100 °C is Q₃ = mc₂Δθ₂ where m = mass of ice = 1 kg, c₂ = specific heat capacity of water = 4187 J/kg°C and Δθ₂ = temperature change. Q₃ = 1 kg × 4187 J/kg°C × (100 - 0)°C = 4187 J/kg°C × 100 °C = 418700 J
The latent heat required to convert the water to steam is Q₄ = mL₂ where L = specific latent heat of vapourisation of water = 2260 J/kg. Q₄ = 1 kg × 2260 J/kg = 2260 J
The heat required to raise the steam to 120 °C is Q₅ = mc₃Δθ₃ where m = mass of ice = 1 kg, c₃ = specific heat capacity of steam = 1996 J/kg°C and Δθ₃ = temperature change. Q₃ = 1 kg × 1996 J/kg°C × (120 - 100)°C = 1996 J/kg°C × 20 °C = 39920 J
The total amount of heat Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅ = 4216 J + 336000 J
+ 418700 J + 2260 J + 39920 J = 801096 J ≅ 801.1 kJ
Answer:
x = 12cm
Explanation:
First, with the values given for the force and the displacement, you calculate the spring-constant of the dynamometer by using the following equation (primero, con los valores dados de la fuerza y el desplazamiento, calculas la constante del resorte aplicando la siguiente formula):

F: force (fuerza) = 10N
k: spring constant (constante del resorte)
x: displacement of the spring (desplazamiento del resorte) = 6cm
by using these values you calculate k (usando estos valores calculas k):

With this value you calculate the displacement for a force of 20N (con este valor de k calculas el desplazamiento del resorte para una fuerza de 20N):

hence, the displacement is 12cm