Answer:
I believe it's 2.1xz^4
Step-by-step explanation:
Answer:

Step-by-step explanation:

Hope this helps you.
<em>Can</em><em> </em><em>I</em><em> </em><em>have</em><em> </em><em>the</em><em> </em><em>brainliest</em><em> </em><em>please</em><em>?</em>
Answer:
-6<w<8
Step-by-step explanation:
-6<w<8
Answer:
The number generator is fair. It picked the approximate percentage of red lollipops most of the time.
Step-by-step explanation:
The other answer choices represent various misinterpretations of the nature of the experiment or the meaning of the numbers generated.
___
A number generator can be quite fair, but give wildly varying percentages of red lollipops. Attached are the results of a series of nine (9) simulations of the type described in the problem statement. You can see that the symmetrical result shown in the problem statement is quite unusual. A number generator that gives results that are too ideal may not be sufficiently random.