1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
13

If a beaker of water and a beaker of acetic acid are at the same elevated temperature, which will cool more quickly to room temp

erature? Support your answer.
Chemistry
1 answer:
WINSTONCH [101]3 years ago
3 0
Beaker of water i guess because usually at home when i get out cold water i put in my room and it cools fast for me so..... i think
You might be interested in
For the reaction Na2CO3+Ca(NO3)2⟶CaCO3+2NaNO3 how many grams of calcium carbonate, CaCO3, are produced from 79.3 g of sodium car
Alexus [3.1K]

Answer:

74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.

Explanation:

The balanced reaction is:

Na₂CO₃ + Ca(NO₃)₂ ⟶ CaCO₃ + 2 NaNO₃

By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:

  • Na₂CO₃: 1 mole
  • Ca(NO₃)₂: 1 mole
  • CaCO₃: 1 mole
  • NaNO₃: 2 mole

Being the molar mass of the compounds:

  • Na₂CO₃: 106 g/mole
  • Ca(NO₃)₂: 164 g/mole  
  • CaCO₃: 100 g/mole
  • NaNO₃: 85 g/mole

then by stoichiometry the following quantities of mass participate in the reaction:

  • Na₂CO₃: 1 mole* 106 g/mole= 106 g
  • Ca(NO₃)₂: 1 mole* 164 g/mole= 164 g
  • CaCO₃: 1 mole* 100 g/mole= 100 g
  • NaNO₃: 2 mole* 85 g/mole= 170 g

You can apply the following rule of three: if by stoichiometry 106 grams of Na₂CO₃ produce 100 grams of  CaCO₃, 79.3 grams of Na₂CO₃ produce how much mass of  CaCO₃?

mass of CaCO_{3} =\frac{79.3 grams of Na_{2} CO_{3} *100 grams of of CaCO_{3}}{106 grams of Na_{2} CO_{3}}

mass of CaCO₃= 74.81 grams

<u><em>74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.</em></u>

6 0
3 years ago
Which compound is an Arrhenius base?(1) CH3OH (3) LiOH<br> (2) CO2 (4) NO2
nydimaria [60]
Lithium Hydroxide (LiOH) is an Arrhenius base
7 0
3 years ago
Read 2 more answers
True or false atoms with fewer then 4 outer elections lend elections?
Mamont248 [21]
The answer is false ....

3 0
3 years ago
Which of the following describes a way in which chemistry affects how you
stepladder [879]

Answer:

I guess A, I am not sure...

6 0
3 years ago
Read 2 more answers
How would a collapsing universe affect light emitted from clusters and superclusters? A. Light would acquire a blueshift. B. Lig
Lady_Fox [76]

Answer:

Choice A: Light would acquire a blueshift.

Explanation:

When a universe collapses, clusters of stars start to move towards each other. There are two ways to explain why light from these stars will acquire a blueshift.

Stars move toward each other; Frequency increases due to Doppler's Effect.

The time period t of a beam of light is the same as the time between two consecutive peaks. If \lambda is the wavelength of the beam, and both the source and observer are static, the time period T will be the same as the time it takes for light travel the distance of one \lambda (at the speed of light in vacuum, c).

\displaystyle t = \frac{\lambda}{c}.

Frequency f is the reciprocal of time period. Therefore

\displaystyle f = \frac{1}{t} = \frac{c}{\lambda}.

Light travels in vacuum at a constant speed. However, in a collapsing universe, the star that emit the light keeps moving towards the observer. Let the distance between the star and the observer be d when the star sent the first peak.

  • Distance from the star when the first peak is sent: d.
  • Time taken for the first peak to arrive: \displaystyle t_1 =\frac{d}{c}.

The star will emit its second peak after a time of. Meanwhile, the distance between the star and the observer keeps decreasing. Let v be the speed at which the star approaches the observer. The star will travel a distance of v\cdot t before sending the second peak.

  • Distance from the star when the second peak is sent: d - v\cdot t.
  • Time taken for the second peak to arrive: \displaystyle t_2 =t + \frac{d - v\cdot t}{c}.

The period of the light is t when emitted from the star. However, the period will appear to be shorter than t for the observer. The time period will appear to be:

\begin{aligned}\displaystyle t' &= t_2 - t_1\\ &= t + \frac{d - v\cdot t}{c} - \frac{d}{c}\\&= t + (\frac{d}{c} - \frac{v\cdot t}{c}) -\frac{d}{c}\\&= t - \frac{v\cdot t}{c} \end{aligned}.

The apparent time period t' is smaller than the initial time period, t. Again, the frequency of a beam of light is inversely proportional to its period. A smaller time period means a higher frequency. Colors at the high-frequency end of the visible spectrum are blue and violet. The color of the beam of light will shift towards the blue end of the spectrum when observed than when emitted. In other words, a collapsing universe will cause a blueshift on light from distant stars.

The Space Fabric Shrinks; Wavelength decreases as the space is compressed.

When the universe collapses, one possibility is that clusters of stars move towards each other. Alternatively, the space fabric might shrink, which will also bring the clusters toward each other.

It takes time for light from a distant cluster to reach an observer on the ground. The space fabric keeps shrinking while the beam of light makes its way through the space. The wavelength of the beam will shrink at the same rate. The wavelength of the beam of light will be shorter by the time the beam arrives at its destination.

Colors at the short-wavelength end of the visible spectrum are blue and violet. Again, the color of the light will shift towards the blue end of the spectrum. The conclusion will be the same: a collapsing universe will cause a blueshift on light from distant stars.

8 0
3 years ago
Other questions:
  • Use the law of constant composition to complete the following table summarizing the amounts of iron and chlorine produced upon t
    9·2 answers
  • Q1. Which reaction represents the half-reaction of lead (Pb) and the SRP value that could be found on an electric potential tabl
    13·1 answer
  • Explain why phosphorus has a low melting point.
    8·2 answers
  • What volume of a 3.0 M stock solution of H2SO4 is needed to prepare 2.8 L of a 1.6 M H2SO4 solution?
    8·2 answers
  • The chemical equation for the formation of ammonia is unbalanced. 3H2(g) + N2(g) -----&gt; NH3(g) If three molecules of hydrogen
    5·2 answers
  • In the following pair, determine whether the two represent resonance contributors of a single species or depict different substa
    13·1 answer
  • How can an induced magnet be made stronger?
    11·2 answers
  • A solar heating specialist is considering paraffin (Cp = 2.90 J/g O C) as a storage material for heat. How many kg of paraffin w
    6·1 answer
  • True or false: Heterotrophs need to go find and eat food.?<br><br><br> :FALSE<br><br> :TRUE
    10·1 answer
  • What is the change in internal energy (in J) of a system that absorbs 0.615 kJ of heat from its surroundings and has 0.247 kcal
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!