Explanation:
yes you got the right idea
Answer:
100ml of a stock 50% KNO3 solutions are needed to prepare 250ml of a 20% KNO3 solution.
Explanation:
In the given question it is mentioned that
S1=50%
V2=250ml
S2= 20%
We all know that
V1S1=V2S2
∴V1= V2×S2÷S1
∴V1= V2S2×1/S1
∴V1= 250×20÷50
∴V1= 100ml
Number of moles = mass of product / molecular mass
=mass of product (MgO) / 40.3
Since the mass of MgO is not given in the question, the correct answer choice cannot be given. However, proceeding witht eh above formula will enable you to find the correct number of moles given the mass of MgO.
Answer:
Both of the studies said that the mass of the atom is centered in the nucleus, which is positive, and there are electrons (negative particles) orbiting it. So, Rutheford and Nagaoka discovered that the atom can be divisible and it has an empty space.
But, in the model of Nagaoka, the nucleus was huge, and for Rutherford, the nucleus was really small, and the mass was concentrated. By his experiment with the gold sheets, the theory was appropriated. That's why Rutherford is credited with the discovery of the nucleus. Nagaoka was incorrect in his suppositions.
Answer:
pH ≅ 4.80
Explanation:
Given that:
the volume of HN₃ = 25 mL = 0.025 L
Molarity of HN₃ = 0.150 M
number of moles of HN₃ = 0.025 × 0.150
number of moles of HN₃ = 0.00375 mol
Molarity of NaOH = 0.150 M
the volume of NaOH = 13.3 mL = 0.0133
number of moles of NaOH = 0.0133× 0.150
number of moles of NaOH = 0.001995 mol
The chemical equation for the reaction of this process can be written as:

1 mole of hydrazoic acid react with 1 mole of hydroxide to give nitride ion and water
thus the new number of moles of HN₃ = 0.00375 - 0.001995 = 0.001755 mol
Total volume used in the reaction = 0.025 + 0.0133 = 0.0383 L
Concentration of
=
= 0.0458 M
Concentration of
=
= 0.0521 M
GIven that :
Ka = 
Thus; it's pKa = 4.72




pH ≅ 4.80