Answer:
The metal probably increases reaction rate by either holding reactant molecules in the correct orientation to react or by weakening or breaking bonds in reactant molecules to make them more reactive.
This is an example of heterogeneous catalysis.
It is heterogeneous catalysis because the catalyst is a solid and the reactants are gases. In heterogeneous catalysis, the catalyst is in a different phase than the reactants
Explanation:
got it right :)
Answer:
Humans have impacted the hydrosphere drastically and will only continue to due so based on population needs. Global climate change, water pollution, damming of rivers, wetland drainage, reduction in stream flow, and irrigation have all exerted pressure on the hydrosphere's existing freshwater systems.
Hope it helps :)
88.98 %
The Balance Chemical Equation is as follow,
2 HCl + Pb(NO₃)₂ → 2 HNO₃ + PbCl₂
According to equation,
331.2 g (1 mole) Pb(NO₃)₂ produces = 278.1 g (1 mole) PbCl₂
So,
870 g of Pb(NO₃)₂ will produce = X g of PbCl₂
Solving for X,
X = (870 g × 278.1 g) ÷ 331.2 g
X = 730.5 g of PbCl₂
Therefore,
Theoretical Yield = 730.5 g
Also as given,
Actual Yield = 650 g
So using following formula for percentage yield,
%age Yield = (Actual Yield / Theoretical Yield) × 100
Putting values,
%age Yield = (650 g / 730.5 g) × 100
%age Yield = 88.98 %
Brianliest please and thank you.
Answer:
The chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Explanation:
Chemical equation:
Cl₂(g) + KBr (aq) → KCl (aq) + Br₂(l)
Balanced chemical equation:
Cl₂(g) + 2KBr (aq) → 2KCl (aq) + Br₂(l)
This equation showed that the chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Chlorine is more reactive than bromine it displace the bromine from potassium and form potassium chloride solution.
The given equation is balanced and completely hold the law of conservation of mass.
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
M = 22.8 g
V = 14.7 mL
ρ - ?
ρ = m/V
ρ = 22.8/14.7 = 1.55 g/mL