Answer:
0.12 M hydrofluoric acid + 0.17 M potassium fluoride
Explanation:
To make a buffer, you must to have an aqueous mixture of a weak acid and its conjugate base or vice versa.
Knowing that:
0.32 M calcium chloride + 0.27 M sodium chloride: <em>is not a good buffer system </em>because CaCl₂ and NaCl are both salts.
0.35 M ammonia + 0.36 M calcium hydroxide <em>is not a good buffer system </em>because ammonia is a weak base but calcium hydroxide is a strong base
0.19 M barium hydroxide + 0.28 M barium chloride <em>is not a good buffer system </em>because Ba(OH)₂ is a strong base.
0.12 M hydrofluoric acid + 0.17 M potassium fluoride <em>is a good buffer system </em>because HF is a weak acid and KF (F⁻ in aqueous medium), is its conjugate base
0.20 M hydrobromic acid + 0.22 M sodium bromide <em>is not a good buffer system </em>because HBr is a strong acid.
Answer:
Explanation:
solid would be a wall e.g
liquid would be water e.g
gas would be oxygen e.g
Answer:
The solution would need 13.9 g of KCl
Explanation:
0.75 m, means molal concentration
0.75 moles in 1 kg of solvent.
Let's think as an aqueous solution.
250 mL = 250 g, cause water density (1g/mL)
1000 g have 0.75 moles of solute
250 g will have (0.75 . 250)/1000 = 0.1875 moles of KCl
Let's convert that moles in mass (mol . molar mass)
0.1875 m . 74.55 g/m = 13.9 g