Answer:
a) P(Y > 76) = 0.0122
b) i) P(both of them will be more than 76 inches tall) = 0.00015
ii) P(Y > 76) = 0.0007
Step-by-step explanation:
Given - The heights of men in a certain population follow a normal distribution with mean 69.7 inches and standard deviation 2.8 inches.
To find - (a) If a man is chosen at random from the population, find
the probability that he will be more than 76 inches tall.
(b) If two men are chosen at random from the population, find
the probability that
(i) both of them will be more than 76 inches tall;
(ii) their mean height will be more than 76 inches.
Proof -
a)
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
) >
)
= P(Z >
)
= P(Z >
)
= P(Z > 2.25)
= 1 - P(Z ≤ 2.25)
= 0.0122
⇒P(Y > 76) = 0.0122
b)
(i)
P(both of them will be more than 76 inches tall) = (0.0122)²
= 0.00015
⇒P(both of them will be more than 76 inches tall) = 0.00015
(ii)
Given that,
Mean = 69.7,
= 1.979899,
Now,
P(Y > 76) = P(Y - mean > 76 - mean)
= P(
)) >
)
= P(Z >
)
= P(Z >
))
= P(Z > 3.182)
= 1 - P(Z ≤ 3.182)
= 0.0007
⇒P(Y > 76) = 0.0007
Answer:
y is 15 x is 3
Step-by-step explanation:
As i said before put the center instead of (h,k) in the general formula and put r=1
so (x-(-2))^2 + (y-(-5)^2 = 1
(x+2)^2 + (y+5)^2 = 1
Answer:
53×3= 159
1908-159(0)= 318
53×6= 318
318-318=0
Answer- 36
first blank-
(1) <u>5</u> <u>9</u>
______
Second blank-
(3) <u>1</u> <u>8</u>
-
<u>3</u> <u>1</u> <u>8</u>
______
third blank-
<u>0</u>
_____
Answer-
<u>3</u> <u>6</u>
0.30by0.50
Hope this helps
and I really need brainliest thanks!