<u>Answer:</u>
The correct answer option is D. The distance between the planet and the Sun changes as the planet orbits the sun.
<u>Explanation:</u>
Kepler’s laws of planetary motion, derived by the German astronomer Johannes Kepler, are the laws of physics that describe the motions of the planets in the solar system.
According to the Kepler's first law of planetary motion: the path on which the planets orbit around the sun is elliptical in shape, with the center of the sun at one focus.
Therefore, the distance between the Sun and the planets vary as the planet orbit around the sun.
Answer:
Explanation:
The two major defects of simple electric cells causes current supplied to be for short time. These defects are: polarization and local action.
a. Polarization: This is a defect caused by an accumulation of hydrogen bubbles at the positive electrode of the cell. It can be prevented by the use of vent, using a hydrogen absorbing material or the use of a depolarizer.
b. Local Action: This is the gradual wearing away of the electrode due to impurities in the zinc plate. It can be controlled by the amalgamation of the zinc plate before it is used.
Answer:Frequency = 3.525 Hertz
Explanation:In static equilibrium, kd =mg
Where k= effective spring constant of the spring.
mg= The weight of the car.
d= static deflection.
Therefore, w =SQRTg/d
w = SQRT 9.81/0.02
w= 22.15 rad/sec
Converting to Hertz unit for frequency
1 rad/s = 0.1591
22.15rad/s=?
22.15 × 0.1591= 3.525 hertz
Answer:
No
Explanation:
The lines of the field of a magnet don't begin or stop at anyplace, they generally make shut circles or loops and will proceed inside magnet (however here and there they are not drawn along these lines). We require an approach to show the bearing of the field.
The field lines of a magnet don't simply end at the magnetic tip. They go directly through it, so that inside the magnet the magnetic field lines indicates from the south to the north pole.
When a snowball turns into a puddle of water, we know that (the snow ball gains energy and changes from a solid to liquid).
This is correct due to the fact that particles of the snowball are gaining speed and so it is heating up, when the solid's temperature reaches the melting point, it will become a liquid.
Therefore, D is the correct answer.