Answer:
150153.06122 N
Explanation:
m = Mass of person = 75 kg
h = Height of fall = 1 m
g = Acceleration due to gravity = 9.81 m/s²
F = Force
s = Displacement = 0.49 cm
Potential energy is given by

Work is given by

The average force exerted is 150153.06122 N
Answer:
a) y₂ = 49.1 m
, t = 1.02 s
, b) y = 49.1 m
, t= 1.02 s
Explanation:
a) We will solve this problem with the missile launch kinematic equations, to find the maximum height, at this point the vertical speed is zero
² =
² - 2 g (y –yo)
The origin of the coordinate system is on the floor and the ball is thrown from a height
y-yo =
=
- g t
t =
/ g
t = 10 / 9.8
t = 1.02 s
b) the maximum height
y- 44.0 =
² / 2 g
y - 44.0 = 5.1
y = 5.1 +44.0
y = 49.1 m
The time is the same because it does not depend on the initial height
t = 1.02 s
Answer:
For the first one, its B) cities B and C
I'm not so sure, but I hope this helps.
Answer:
The net torque is zero
Explanation:
Let's assume that the dipole is compose of two equal but oposite charges e, and it cam be represented by a rod with one end having a charge e and the other end with a charge of -e. Notice that the dipole is parallel to the electric field thus the force felt by both of the charges will be parallel to the electric field. This means that there will be no components of the forces that are perpendicular to the rod which is a requirement for it to have a torque.
Frequency (f) = 500 hz (SI)
Velocity (V) = 1250 m/s (SI)
Wavelength (Lambda) = ? meters
