Answer:
Weight on Jupiter will be equal to 2940 N
Explanation:
We have given given acceleration due to gravity on Jupiter is 3 times of acceleration due to gravity on earth
Acceleration due to gravity on earth 
So acceleration due to gravity on Jupiter = 
Mass is given m = 100 kg
We have to find the weight
Weight is equal to W = mg, here m is mass and a is acceleration
So weight 
HEJEGEJDHIEBDJDHDIDGDJGJDHD
The Cosmic Ray is a natural way for nuclear fission and nucleosynthesis to occur. It refers to the formation of chemical elements from the impact of cosmic rays on an object.
Answer:
a) 
b) 
c) 
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:

Part b
For this case first we can convert the spring constant to N/m like this:

And the work donde by the spring on this case is given by:

Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

And if we solve for the initial velocity we got:

Part d
Let d1 represent the new maximum distance, in order to find it we know that :

And replacing we got:

And we can put the terms like this:

If we multiply all the equation by 2 we got:

Now we can replace the values and we got:


And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
Answer:
141.78 ft
Explanation:
When speed, u = 44mi/h, minimum stopping distance, s = 44 ft = 0.00833 mi.
Calculating the acceleration using one of Newton's equations of motion:

Note: The negative sign denotes deceleration.
When speed, v = 79mi/h, the acceleration is equal to when it is 44mi/h i.e. -116206.48 mi/h^2
Hence, we can find the minimum stopping distance using:

The minimum stopping distance is 141.78 ft.