The original frequency of horn of Car A is 1071 Hz.
Explanation:
Doppler effect describes the change in the frequency of sound waves with respect to the observer. As the sound waves emitted from a source need to travel the air medium to reach observer, it will undergo loss in energy. So there will be change in its frequency compared to original frequency. Depending upon the direction of travel of source and observer the shifting of frequency will vary.

Here vo is the observer velocity and vs is the velocity of the source. So Vo = 15 m/s as car B is the observer and Vs = 35 m/s as car A is the source. And f is the frequency of sound wave at source that is car A.
Similarly, the doppler shift in frequency is the frequency of sound heard by car B which is f' = 1140 Hz. And v is the speed of sound that is v = 343 m/s
1140 = 
f = 1140/1.0649= 1071 Hz.
Thus, the original frequency of horn of Car A is 1071 Hz.
Answer:
)Give the definition of poverty line as defined by the World Bank.
Answer:
speed of eight ball speed after the collision is 3.27 m/s
Explanation:
given data
initially moving v1i = 3.4 m/s
final speed is v1f = 0.94 m/s
angle = θ w.r.t. original line of motion
solution
we assume elastic collision
so here using conservation of energy
initial kinetic energy = final kinetic energy .............1
before collision kinetic energy = 0.5 × m× (v1i)²
and
after collision kinetic energy = 0.5 × m× (v1f)² + 0.5 × m× (v2f)²
put in equation 1
0.5 × m× (v1i)² = 0.5 × m× (v1f)² + 0.5 × m× (v2f)²
(v2f)² = (v1i)² - (v1f)²
(v2f)² = 3.4² - 0.94²
(v2f)² = 10.68
taking the square root both
v2f = 3.27 m/s
speed of eight ball speed after the collision is 3.27 m/s
Answer:
The distance between two objects
Explanation:
Depending on how far away or how close two objects are will affect the gravity.