When two black holes spiral around each other and ultimately collide, they send out gravitational waves - ripples in space and time that can be detected with extremely sensitive instruments on Earth. ... If confirmed, it would be the first known light flare from a pair of colliding black holes.
We know that impulse is simply the product of Force and time:
Impulse = Force * time
Since Force has a unit of Newton or kg m/s^2 and time is in
seconds, therefore impulse can have units as:
N s
or
<span>kg m/s</span>
The correct answer is:
<span>C) The actual frequency of the siren does not change despite appearances.
In fact, Bob will observe an increase in the apparent frequency as the emergency vehicle approaches him, while Jill will observe a decrease in the apparent frequency as the emergency vehicle moves away from him, because of the Doppler effect (the relative velocity between the observer and the source of the sound is changing), but this effect involves the apparent frequency, while the real frequency of the siren will remain the same.</span>
Answer:
Explanation:
Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.
Speed = Distance/Time
As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.
Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.
So the speed of noise = Distance/Time = 2000/5.8=345 m/s.
Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.