Answer:
The person should not be concerned about radon.
Explanation:
<em>A person living on the sixth floor of an aparment probably should not be concerned about radon</em>. In the conditions of the Earth's atmosphere (temperature and pressure), radon exists as a gas. This gas has a density that is approximately 8 times higher than the density of air (9.73 g/L compared to 1.22 g/L). <em>This means that radon gas would not rise, and instead remain close to the ground</em>, meaning that an apartment on a sixth floor is too far away from the ground for radon gas to reach there.
A gas being denser than air is also the reason why if you blow into a balloon, it will fall to the ground, because CO₂ is denser than air.
The concept of resonance is required for certain molecules because the localized electron model assumes electrons are located between a given pair of atoms in a molecule.
It would be carbon dioxide because carbon dioxide makes up the vast majority of greenhouse gas .
Nitrogen (N2) and hydrogen (H2) gases react to form ammonia, which requires -99.4 J/K of standard entropy (ΔS°).
What is standard entropy?
The difference between the total standard entropies of the reaction mixture and the summation of the standard entropies of the outputs is the standard entropy change. Each entropy in the balanced equation needs to be compounded by its coefficient, as shown by the letter "n."
Calculation:
Balancing the given reaction following-
1/2 N₂(g) + 3/2 H₂ (g)→ NH₃ (g)
ΔS° = [1 mol x S° (NH₃)g] - [1/2 mol x S° (N₂)g] - [3/2 mol x S°(H₂)g]
Here S° = standard entropy of the system
Insert into the aforementioned equation all the typical entropy values found in the literature:
ΔS° = [1 mol x 192.45 J/mol.K] - [1/2 mol x 191.61 J/mol.K] - [3/2 mol x 130.684 J/mol.K]
⇒ΔS° = - 99.4 J/K
Therefore, the standard entropy, ΔS° is -99.4 J/K.
Learn more about standard entropy here:
brainly.com/question/14356933
#SPJ4
A magnet because it will remove only metal and not the saw dust
Hope this helps