<span>4.9 L would be the answer to this question :)</span>
Answer:
Concentration of OH⁻:
1.0 × 10⁻⁹ M.
Explanation:
The following equilibrium goes on in aqueous solutions:
.
The equilibrium constant for this reaction is called the self-ionization constant of water:
.
Note that water isn't part of this constant.
The value of
at 25 °C is
. How to memorize this value?
- The pH of pure water at 25 °C is 7.
![[\text{H}^{+}] = 10^{-\text{pH}} = 10^{-7}\;\text{mol}\cdot\text{dm}^{-3}](https://tex.z-dn.net/?f=%5B%5Ctext%7BH%7D%5E%7B%2B%7D%5D%20%3D%2010%5E%7B-%5Ctext%7BpH%7D%7D%20%3D%2010%5E%7B-7%7D%5C%3B%5Ctext%7Bmol%7D%5Ccdot%5Ctext%7Bdm%7D%5E%7B-3%7D)
- However,
for pure water. - As a result,
at 25 °C.
Back to this question.
is given. 25 °C implies that
. As a result,
.
Beryllium, Magnesium, Calcium....etc have two valence electrons
Answer:
A. 0.0440 moles/day
Explanation:
First, let's figure out how many moles 33.23 grams of silver is. We do this by dividing the number of grams by the molar mass of silver, which is 107.87 g/mol:
33.23 g Ag ÷ 107.87 g/mol = 0.3081 mol Ag
Now, let's divide this by 7 to get the rate per day:
0.3081 mol Ag ÷ 7 days = 0.0440 mol/day
Thus, the answer is A.
The answer is High altitude