Answer: The center of gravity is 1.1338 m away from the left side of the barbell
Explanation:
Length of the barbell = 1.90 m
The distance center of gravity from left = x
Mass on the left side = 25 kg
The distance center of gravity from right = 1.90 - x
Mass on the right side = 37 kg
At the balance point: 


The center of gravity is 1.1338 m away from the left side of the barbell
Answer:

Where
represent the force for each of the 5 cases
presented on the figure attached.
Explanation:
For this case the figure attached shows the illustration for the problem
We have an inverse square law with distance for the force, so then the force of gravity between Earth and the spaceship is lower when the spaceship is far away from Earth.
Th formula is given by:

Where G is a constant 
represent the mass for the earth
represent the mass for the spaceship
represent the radius between the earth and the spaceship
For this reason when the distance between the Earth and the Spaceship increases the Force of gravity needs to decrease since are inversely proportional the force and the radius, and for the other case when the Earth and the spaceship are near then the radius decrease and the Force increase.
Based on this case we can create the following rank:

Where
represent the force for each of the 5 cases
presented on the figure attached.
Because mass and distance determine gravity, so the more mass you have, the more gravity.
Answer:
but I can tomorrow if you have time can you come to the meeting tonight but yyyy the person who is this and what
Explanation:
gyyyyyyyyyyyyyyyyy the number of the person who is this and what is the
<span>The momentum of the basketball is three times that of the softball. Momentum equals mass times velocity. Therefore, if the basketball and softball are moving at the same velocity, and the basketball has three times the mass of the softball, the basketball has three times the momentum of the softball.</span>