Answer:
Explanation: We have seasons because Earth's axis – the imaginary line that goes through the Earth and around which the Earth spins — is tilted. It's tilted about 23.5 degrees relative to our plane of orbit (the ecliptic) around the Sun. As we orbit our Sun, our axis always points to the same fixed location in space. Our northern axis points almost directly toward Polaris, the North Star.
Answer:
v = R w
With this expression we see that for each point at different radius the tangential velocity is different
Explanation:
They indicate that the angular velocity is constant, that is
w = dθ / dt
Where θ is the radius swept angle and t the time taken.
The tangential velocity is linear or
v = dx / dt
Where x is the distance traveled in time (t)
In the definition of radians
θ = s / R
Where s is the arc traveled and R the radius vector from the pivot point, if the angle is small the arc (s) and the length (x) are almost equal
θ = x / R
We substitute in the speed equation
v = d (θ R) / dt
The radius is a constant for each point
v = R dθ / dt
v = R w
With this expression we see that for each point at different radius the tangential velocity is different
Answer:
16 cm
Explanation:
For protons:
Energy, E = 300 keV
radius of orbit, r1 = 16 cm
the relation for the energy and velocity is given by

So,
.... (1)
Now,

Substitute the value of v from equation (1), we get

Let the radius of the alpha particle is r2.
For proton
So,
... (2)
Where, m1 is the mass of proton, q1 is the charge of proton
For alpha particle
So,
... (3)
Where, m2 is the mass of alpha particle, q2 is the charge of alpha particle
Divide equation (2) by equation (3), we get

q1 = q
q2 = 2q
m1 = m
m2 = 4m
By substituting the values

So, r2 = r1 = 16 cm
Thus, the radius of the alpha particle is 16 cm.
Fnet =ma
1560)(1.3102)
the answer is b
Answer:
there are 25 kg objective travelling at 2m/s to the right.