Answer:0.507m
To answer this question, you need to know how to calculate a cube volume. Cube volume is calculated by multiplying the length^3, make its unit become cubic meter.
In this case we know the volume is 130L and asked how long is the length in meter. Then you need to convert the liter into m3. The calculation would be:
V=R^3
130L= R^3
R= 3<span>√(130m3/1000)
R= 5.065797/10 m
R= 0.506579m
Rounded up to 0.507m</span>
Answer:
Explanation:This question is simply asking you to describe the following equations:
E = hv
v = c/L
E = hc/L
where E is the energy, h is Planck's constant, v is the frequency, c is the speed of light and L is the wavelength.
By looking at the equations you should be able to tell what the relationships between energy, frequency and wavelength are. If you are having difficulty describing them, then create a table with actual values and see what happens to the energy as you increase or decrease the frequency and/or wavelength.
The tension in each of the ropes is 625 N.
Draw a free body diagram for the bag of food as shown in the attached diagram. Since the bag hangs from the midpoint of the rope, the rope makes equal angles θ with the horizontal. The tensions <em>T</em> in both the ropes are also equal.
Resolve the tension T in the ropes into horizontal and vertical components T cosθ and T sinθ respectively, as shown in the figure. At equilibrium,
......(1)
Calculate the value of sinθ using the right angled triangles from the diagram.

Substitute the value of sinθ in equation (1) and simplify to obtain T.

Thus the tension in the rope is 625 N.
The total work done of 0.018 joules is needed to move the charges apart and double the distance between them.
We have two electric charges q(A) = 1μc and q(B) = -2μc kept at a distance 0.5 meter apart.
We have to calculate much work is needed to move the charges apart and double the distance between them.
<h3>What s the formula to calculate the Potential Energy of a system of two charges (say 'q' and 'Q') separated by a distance 'r' ?</h3>
The potential energy of the system of two charges separated by a distance is given by -

In order to solve this question, it is important to remember the work - energy theorem which states -
"The change in the energy of the body is equal to work done on it"
Hence, using this work -energy theorem in the question given to us we get -

In our case -

W = 0.018 joules
Hence, the total work done should be 0.018 joules.
To solve more question on potential energy, visit the link below -
brainly.com/question/15014856
#SPJ4
Answer:
a)
b)
Explanation:
The gravitational force on the satellite is calculated with Newton's Gravitation Law:

Where
is Earth's mass,
is the satellite mass,
is the distance between their centers, where
is the height of the satellite (from Earth's surface) and
is Earth's radius, and
is the gravitational constant.
a) With these values we then have:

b) And the fraction this force is of the satellite’s weight <em>W=mg</em> is:
