Answer:
4.75 moles of Fe
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
FeO + CO —> Fe + CO2
Now, we can determine the number of mole of iron, Fe produced by the reaction of 4.75 mol of FeO with excess CO as follow:
From the balanced equation above,
1 mole of FeO reacted to produce 1 mole of Fe.
Therefore, 4.75 moles of FeO will also react to produce 4.75 moles of Fe.
Therefore, 4.75 moles of Fe is produced.
3.37 x 10¹⁰ molecules
Explanation:
Given parameters:
Volume of water = 1pL = 1 x 10⁻¹²L
Density of water = 1.00g/mL = 1000g/L
Unknown:
Number of water molecules = ?
Solution:
To solve this problem, we first find the mass of the water molecule in the inkjet.
Mass of water = density of water x volume of water
Then, the number of molecules can be determined using the expression below:
number of moles = 
Number of molecules = number of moles x 6.02 x 10²³
Solving:
Mass of water = 1 x 10⁻¹² x 1000 = 1 x 10⁻⁹g
Number of moles:
Molar mass of H₂O = 2 + 16 = 18g/mol
Number of moles =
= 5.6 x 10⁻¹⁴moles
Number of molecules = 5.6 x 10⁻¹⁴ x 6.02 x 10²³ = 33.7 x 10⁹
= 3.37 x 10¹⁰ molecules
Learn more:
Number of molecules brainly.com/question/4597791
#learnwithBrainly
Answer: The molar mass of the gas is 31.6 g/mol
Explanation:
According to ideal gas equation:
P = pressure of gas = 3.0 atm
V = Volume of gas = 25.0 L
n = number of moles = ?
R = gas constant =
T =temperature =
Moles =


The molar mass of the gas is 31.6 g/mol
The answer to this question would be: <span>1) Electrons occupy regions of space
</span><span>
In plum pudding model, the atoms are drawn as pudding and the negative particle is spread around the pudding. In this model, the electron is spread but not moving in orbit. Rutherford model that comes afterward is the one that says most of the atoms is empty space.</span>