Answer:
The correct answer is pOH= 11
Explanation:
From the aqueous acid-base equilibrium we know that
pH + pOH = 14
If we know pH, we can calculate pOH as follows:
pOH = 14 - pH
In this problem, the solution has a pH of 3, so:
pOH = 14 - 3 = 11
Answer:
One
Explanation:
Because it reaches an equibrum state so it's equals to one
1. H₂SO₄ + 2NH₄OH ⟶ (NH₄)₂SO₄ + 2H₂O
2. 2NaOH + H₂CO₃ ⟶ Na₂CO₃ + 2H₂O
3. HNO₃ + KOH ⟶ KNO₃ + H₂O
<em>Explanation</em>:
Acid + base ⟶ salt + water
Take the H from the acid and the OH from the base to get water.
Then, join what’s left to get the salt. Write the symbol for the metal first.
For example, in equation 3, take the H from HNO₃ and the OH from KOH.
Combining the remaining parts (NO₃ and K) to get the salt, KNO₃.
Hydroxylamine in water: HONH₂(aq) + H₂O(l) ⇄ HONH₃⁺(aq) + OH⁻(aq).
Hydroxylammonium nitrate in water: HONH₃NO₃(aq) → OHNH₃⁺(aq) + NO₃⁻(aq).
1) with positive hydrogen ions (protons) react base and gives weak conjugate acid:
H⁺(aq) + HONH₂(aq) ⇄ HONH₃⁺(aq).
2) with hydroxide anions react acid and produce weak base and weak electrolyte water:
HONH₃⁺(aq) + OH⁻(aq) ⇄ HONH₂(aq) + H₂O(l).
Kinetic. Transform to chemical energy in muscles