Answer:
y=-5x+6
Step-by-step explanation:
The solution for this problem is:
We know the problem has the following given:
Sample size of 200
X = 182
And the probability of .9005; computation: 1 - .0995 = .9005
So in order to get the probability:
P (x >= 182) = 1 – 0.707134 = .292866 is the probability
that when 200 reservations
are recognized, there are more passengers showing up than there
are seats vacant.
The other solution is:
p (>= 182) = p(183) +
P(184) + P(185) + ... + P(199) + P(200) = 0.292866
Hello,
P(x)=x^4-6x²+2=(x-a)(x-b)(x-c)(x-d)
=x^4-(a+b+c+d)x^3+(ab+ac+ad+bc+bd+cd)x^2-(abc+abd+acd+bcd)x+abcd
==>
ab+ac+ad+bc+bd+cd=-6
abc+abd+acd+bcd=0
abcd=2
a+b+c+d=0 ==>(a+b+c+d)²=0=a²+b²+c²+d²+2(ab+ac+ac+bc+bd+cd)
==>a²+b²+c²+d²=0-2*(-6)=12
if a is a root P(a)=0==>a^4-6a²+2=0
if b is a root P(b)=0==>b^4-6b²+2=0
if c is a root P(a)=0==>c^4-6c²+2=0
if d is a root P(a)=0==>d^4-6d²+2=0
==>a^4+b^4+c^4+d^4-6(a²+b²+c²+d²)+4*2=0
==>a^4+b^4+c^4+d^4=-8+6*12=64
Answer: 5x+7y=500
Step-by-step explanation: