Answer:
More energy is released from the old substance than the new substance needs to form its chemical bonds
Explanation:
Edge 2020
Answer:
The boiling point of sample X and sample Y are exactly the same.
Explanation:
The difference between sample X and sample Y is that they occupy different volumes. However, they both contain pure water. Remember that pure water has uniform composition irrespective of its volume.
Volume does not affect the boiling point as long as the volume is small enough not to give rise to significant pressure changes in the liquid.
The boiling point of a liquid is the temperature at which the pressure exerted by the surroundings upon a liquid is equaled by the pressure exerted by the vapour of the liquid; under this condition, addition of heat results in the transformation of the liquid into its vapour without raising the temperature.
It can be clearly seen from the above that the volume of a solution of pure water does not affect its boiling point hence sample X and sample Y will have the same boiling point.
In a chemical reaction, the equilibrium constant refers to the value of its reaction quotient at chemical equilibrium, that is, a condition attained by a dynamic chemical system after adequate time has passed, and at which its composition has no measurable capacity to undergo any kind of further modification.
The given reaction is: HCN (aq) + OH⁻ = CN⁻ (aq) + H2O (l)
The equilibrium constant = product of concentration of products / product of concentration of reactants
(Here, H2O is not considered as its concentration is very high)
So, Keq = [CN⁻] / [HCN] [OH⁻]
Answer:
1. Hydrogen
Explanation:
These planets contain liquid hydrogen in their interior, while the earth has liquid iron in it.
When liquid hydrogen is in tremendous pressure enviroments, the electrons that make up each atom of this element end up "jumping" to other atoms. These "jumps" allow liquid hydrogen to behave like a metal.
In addition, with the constant energy released by the nucleus of planets like Jupiter and Saturn, as well as their rotations, the liquid hydrogen receives induction of currents, giving rise to extremely powerful magnetic fields.
Answer:
m = 20.9 g.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by recalling both the Avogadro's number for the calculation of the moles in the given molecules of calcium phosphate and the molar mass of this compound in order to secondly calculate the mass as shown on the following setup:

Regards!