Explanation:
first you have to find accelerarion, it is given that the initial velocity(u) is 3 m/s, distance travelled(s) be 2m finall it came to rest so final velocity be 0m/s
now using the 3rd law of motion
v^2=u^2+2as
0=9+2a2
a= -9/4m/s^2
now force=mass×accelration
=2kg×(-9/4)m/s^2
=4.5 N
4.5 newton force applied on the book!
✌️:)
Answer:
Available energy = 35 x 10⁶ J
Explanation:
Given:
Amount of energy (Q) = 21 gj = 21 x 10⁹ J
Temperature T1 = 600 k
Temperature T0 = 27 + 273 = 300k
Find:
Available energy
Computation:
Available energy = Q[1/T0 - 1/T1]
Available energy = 21 x 10⁹ J[1/300 - 1/600]
Available energy = 35 x 10⁶ J
In a problem where a child is danger form drowning from a river who has a current of 3.1km/hr to east and the child is 0.6km fro the shore and the upstream is 2,5km from the dock. So base on the question the boat with a speed of 24.8 km/hr is 1.9 km because the child is 0.6 km off the dock so 2.5 minus 0.6
Answer:
Explanation:
If you drop a ball from
the top of a building it
gains speed as it falls.
• Every second, its
speed increases by
10 m/s.
• Also it does not fall
equal distances in
equal time intervals
• If the acceleration = 0 then the velocity is
constant. [remember that acceleration is
the rate of change of velocity]
• In this case the distance an object will
travel in a certain amount of time is given
by distance = velocity x time
• For example, if you drive at 60 mph for
one hour you go 60 mph x 1 hr = 60 mi.