see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
:D
Step-by-step explanation:
Answer:
Step-by-step explanation:
d = dimes and a = quarters
0.10d + 0.25a > = 3 (thats greater then or equal) <===
Answer:
I am very confused by this
Step-by-step explanation:
so I'ma say yes
Answer:
x = -10
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
4.5(8 - x) + 36 = 102 - 2.5(3x + 24)
<u>Step 2: Solve for </u><em><u>x</u></em>
- Distribute: 36 - 4.5x + 36 = 102 - 7.5x - 60
- Combine like terms: -4.5x + 72 = -7.5x + 42
- Add 7.5x on both sides: 3x + 72 = 42
- Subtract 72 on both sides: 3x = -30
- Divide 3 on both sides: x = -10
<u>Step 3: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: 4.5(8 - -10) + 36 = 102 - 2.5(3(-10) + 24)
- Simplify: 4.5(8 + 10) + 36 = 102 - 2.5(3(-10) + 24)
- Multiply: 4.5(8 + 10) + 36 = 102 - 2.5(-30 + 24)
- Add: 4.5(18) + 36 = 102 - 2.5(-6)
- Multiply: 81 + 36 = 102 + 15
- Add: 117 = 117
Here we see that 117 does indeed equal to 117.
∴ x = -10 is a solution of the equation.