Answer:
2 sales person
Step-by-step explanation:
If there are 5 sales person and 22 clients
Therefore:
1 sales Person will be responsible for
Client.
Therefore: 2 sales person will be responsible for 5 clients since there must be equal distribution.
Answer:

Step-by-step explanation:
For Chocolates:
÷

For Lollipops:
÷

Now you add
and
:

Hope I helped! If so, may I get Brianliest and a Thanks?
Thank you, have a good one! =)
Answer:
edfghjnsdfghjkm
Step-by-step explanation:

now, if we take 2000 to be the 100%, what is 2200? well, 2200 is just 100% + 10%, namely 110%, and if we change that percent format to a decimal, we simply divide it by 100, thus
.
so, 1.1 is the decimal number we multiply a term to get the next term, namely 1.1 is the common ratio.
![\bf \qquad \qquad \textit{sum of a finite geometric sequence}\\\\S_n=\sum\limits_{i=1}^{n}\ a_1\cdot r^{i-1}\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases}n=n^{th}\ term\\a_1=\textit{first term's value}\\r=\textit{common ratio}\\----------\\a_1=2000\\r=1.1\\n=4\end{cases}\\\\\\S_4=2000\left[ \cfrac{1-(1.1)^4}{1-1.1} \right]\implies S_4=2000\left(\cfrac{-0.4641}{-0.1} \right)\\\\\\S_4=2000(4.641)\implies S_4=9282](https://tex.z-dn.net/?f=%20%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bsum%20of%20a%20finite%20geometric%20sequence%7D%5C%5C%5C%5CS_n%3D%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%5C%20a_1%5Ccdot%20r%5E%7Bi-1%7D%5Cimplies%20S_n%3Da_1%5Cleft%28%20%5Ccfrac%7B1-r%5En%7D%7B1-r%7D%20%5Cright%29%5Cquad%20%5Cbegin%7Bcases%7Dn%3Dn%5E%7Bth%7D%5C%20term%5C%5Ca_1%3D%5Ctextit%7Bfirst%20term%27s%20value%7D%5C%5Cr%3D%5Ctextit%7Bcommon%20ratio%7D%5C%5C----------%5C%5Ca_1%3D2000%5C%5Cr%3D1.1%5C%5Cn%3D4%5Cend%7Bcases%7D%5C%5C%5C%5C%5C%5CS_4%3D2000%5Cleft%5B%20%5Ccfrac%7B1-%281.1%29%5E4%7D%7B1-1.1%7D%20%5Cright%5D%5Cimplies%20S_4%3D2000%5Cleft%28%5Ccfrac%7B-0.4641%7D%7B-0.1%7D%20%20%5Cright%29%5C%5C%5C%5C%5C%5CS_4%3D2000%284.641%29%5Cimplies%20S_4%3D9282%20)
<h2>Answer</h2>

<h2>Explanation</h2>
The first thing we need to do is find the slope of our line. To do it we are using the slope formula:

where
is the slope of the line
are the coordinates of the first point on the line
are the coordinates of the second point
From our graph we can get the points (0, 43) and (2, 55), so
,
,
, and
. Let's replace the values in our slope formula:



Now that we have our slope, we can use the point-slope formula:



But remember that the equation of a line in standard form is
, so we need to subtract
and add 43 to both sides of our point slope equation:



We can conclude that the equation in standard form that represent the relationship in the graph is
.