In a certain region of space, a uniform electric field is in the x direction. A particle with negative charge is carried from x=20.0 cm to x=60.0cm.
<h3>Where is the
electric potential, when the particle moved?</h3>
The charge field system's electric potential energy rose. The particle experiences an electric force that is directed against the x-axis. It is pushed uphill by an outside force, which raises the potential energy.
When a charge to be moved against an applied electric field, electric potential energy is needed. A charge must be moved through a stronger electric field with more energy than it would require to carry it via a weaker electric field.
In a certain region of space, a uniform electric field is in the x direction. A particle with negative charge is carried from x=20.0 cm to x=60.0cm.
The electric potential energy of the charge field system:
- (a) increase
- (b) remain constant
- (c) decrease
- (d) change unpredictably
The correct option is a).
To learn more about electric potential, refer to:
brainly.com/question/21808222
#SPJ4
Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.
Answer:
d = 44.64 m
Explanation:
Given that,
Net force acting on the car, F = -8750 N
The mass of the car, m = 1250 kg
Initial speed of the car, u = 25 m/s
Final speed, v = 0 (it stops)
The formula for the net force is :
F = ma
a is acceleration of the car

Let d be the breaking distance. It can be calculated using third equation of motion as :

So, the required distance covered by the car is 44.64 m.
every thing on this earth has it,s own mass
Answer:
35.792 N
Explanation:
d = Diameter of rod = 2.7 cm
h = Length of rod = 81.7 cm
= Density of rod = 7800 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Volume of rod

Mass is given by

Weight is given by

The weight of the rod is 35.792 N