Answer: There are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
Explanation:
Given: Volume = 38.0 L
Pressure = 1430 mm Hg (1 mm Hg = 0.00131579 atm) = 1.9 atm
Temperature = 273.15 K
Using ideal gas equation, the moles of gas will be calculated as follows.

where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T =temperature
Substitute the values into above formula as follows.

Thus, we can conclude that there are 3.2 moles of gas if you have a volume of 38.0 L under a pressure of 1430 mmHg at standard temperature.
Answer:
Explanation:
uestion
If an atom of an element has a mass number of 45 and it has 20 neutrons in its nucleus, what is the atomic number of the
element?
Answer:
The volume will be 568.89 mL.
Explanation:
Boyle's law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases. That is, the pressure of the gas is directly proportional to its temperature. Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
Finally, Charles's law indicates that as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. In summary, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:
Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Studying an initial state 1 and a final state 2, it is fulfilled:

In this case:
- P1= 960 mmHg
- V1= 550 mL
- T1= 200 C= 473 K (being 0 C=273 K)
- P2= 830 mmHg
- V2= ?
- T2= 150 C= 423 K
Replacing:

Solving:

V2= 568.9 mL
<u><em>The volume will be 568.89 mL.</em></u>
When using filter paper chromatography to separate ink, one will observe that more colours are mixed into darker inks. The darker an ink is, the more the colours that will be separated out during chromatography process. Thus, the observation that the darker the ink, the more colours are mixed into it will lead one to believe that ink is a mixture.