Explanation:
<em><u>in fact , we can use newtons second law of motion (see the SPT: Force topic) to calculate the acceleration in each of these cases</u></em>
<em><u>in fact , we can use newtons second law of motion (see the SPT: Force topic) to calculate the acceleration in each of these caseshope it helps you like me plz</u></em>
First we will calculate free energy change:
ΔG₀ = ΔH₀ - (T * ΔS₀)
= - 793 kJ - (298 * - 0.319 kJ/K) = - 698 kJ
We know the relation between free energy change and cell potential is:
ΔG₀ = - n F E⁰ where
F = Faraday's constant = 96485 C/mol
n = 2 (given by equation that the electrons involved is 2)
ΔG₀ = - 2 x 96485 x E⁰
- 698 kJ = - 2 x 96485 x E⁰
E⁰ = (698 x 1000) / (2 x 96485) = 3.62 volts
Answer:
When writing equation the mass on left side of equation must be equal to the mass on right side. True
Explanation:
The chemical reactions always follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass because total mass is equal on both side of equation.
Answer : The final concentration of
is, 2.9 M
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = 3.5 min
a = initial concentration of the reactant = 3.0 M
a - x = concentration left after decay process = ?
Now put all the given values in above equation, we get


Thus, the final concentration of
is, 2.9 M