0.67s
Explanation:
Given parameters:
Speed of bullet = 600m/s
Distance of target = 400m
Unknown:
Time taken for bullet to reach target = ?
Solution:
Speed is a physical quantity that expresses the rate of change of distance with time;
Speed = 
Since time is unknown, we make it the subject of the expression;
time =
= 
time = 0.67s
Learn more:
Speed brainly.com/question/10048445
#learnwithBrainly
Answer:
Approximately
.
Explanation:
Assuming that there is no other force on this vehicle, the
force from the road would be the only force on this vehicle. The net force would then be equal to this
force. The size of the net force would be
.
Let
denote the mass of this vehicle and let
denote the net force on this vehicle.
By Newton's Second Law of motion, the acceleration of this vehicle would be proportional to the net force on this vehicle. In other words, the acceleration of this vehicle,
, would be:
.
For this vehicle,
whereas
. The acceleration of this vehicle would be:
.
Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high
Answer:
Uranus, Pluto, Neptune, Saturn , Jupiter, mars, Venus ,mercury and sun
Answer:

Explanation:


If the sun considered as x=0 on the axis to put the center of the mass as a:

solve to r1


Now convert to coordinates centered on the center of mass. call the new coordinates x' and y' (we won't need y'). Now since in the sun centered coordinates the angular momentum was

where T = orbital period
then L'(x',y') = L(x) by conservation of angular momentum. So that means

Since
then
