Answer:
F = 156.3 N
Explanation:
Let's start with the top block, apply Newton's second law
F - fr = 0
F = fr
fr = 52.1 N
Now we can work with the bottom block
In this case we have two friction forces, one between the two blocks and the other between the block and the surface. In the exercise, indicate that the two friction coefficients are equal
we apply Newton's second law
Y axis
N - W₁ -W₂ = 0
N = W₁ + W₂
as the two blocks are identical
N = 2W
X axis
F - fr₁ - fr₂ = 0
F = fr₁ + fr₂
indicates that the lower block is moving below block 1, therefore the upper friction force is
fr₁ = 52.1 N
fr₁ = μ N
a
s the normal in the lower block of twice the friction force is
fr₂ = μ 2N
fr₂ = 2 μ N
fr₂ = 2 fr₁
we substitute
F = fr₁ + 2 fr₁
F = 3 fr₁
F = 3 52.1
F = 156.3 N
Weight doesn't really mean much as it just means gravity the bigger a space object is the more force it has to pull on something since the moon is smaller than the earth then it has less gravity and then less weight on scales.
Answer:
N= 238 turns
Explanation:
The induced Emf that goes through a solenoid can be calculated using the below formula;
Where ξ=induced Emf
L= self inductance
I= current
ξ= L|dⁱ/dt|
Making L which is the self inductance subject of formula we have
L=ξ/[|dⁱ|*|dt|]
The current here is changing at the rate of
.0260 A/s
L=NΦB/i
N=ξ/Φ|di|*|dt|
Magnitude of the induced Emf given= 12.6mV then if we convert to volt we have 12.6×10⁻³ V
The current I = 1.40A
Magnitude flux through the flux=/0.00285 Wb
Then if we substitute all this Value to equation above we have
N=(12.6×10⁻³ V×1.40A)/(0.00285 Wb×0.0260 A/s)
N=238turn
Therefore, there are 238turns in the solenoid
Answer:
The total momentum after the collision is 1 kg-m/s.
Explanation:
We have,
Mass of a steel sphere is 0.5 kg
It is travelling with a speed of 2 m/s
It collides with an identical sphere at rest.
The law of conservation of momentum states that the initial momentum is equal to the final momentum for an isolated system. Here, initial momentum is :

So, the total momentum after the collision is 1 kg-m/s.