Answer:
The angular momentum of a cylinder, when it is rotating with constant angular velocity is Lini =Iωi
. When two cylinders are added to the rotating cylinder, which are identical in their dimensions, the moment of inertia of the entire system increases (since mass increases). The final moment of inertia will be 3I
Since friction exist, all the cylinders start rotating with same angular velocity, the new angular velocity can be calculated using conservation of angular momentum
Thus, Iωi =3Iωf ⟹ωf =ωi/3 = 0.33ωi
Ok. PEMDAS tells us to take care of the square first. When we do that, the denominator becomes
(6.4)^2 x 10^12
= 40.96 x 10^12 .
Now it's just a matter of mashing out the fraction.
The 'mantissa' (the number part) is
6/40.96 = 0.1465
and the order of magnitude is
10^24 / 10^12 = 10^12 .
Put it all together and you've got
1.465 x 10^11 .
Atomic Number = amount of protons. Atomic mass = protons (7) and neutrons (8)
Electrons will be the protons - any charge the isotope has. For example, a +2 charge would make the electrons 7- (+2) = 5. A -2 charge would be electrons 7 - (-2) = 9
When two sides of a membrane are in contact with each other, the distribution of ions will alter as a result of the binding of a signal molecule to a ligand-gated ion channel.
<h3>
What is a ligand-gated ion channel?</h3>
Ligand-gated ion channels (LGICs) are membrane proteins that are structurally integral and feature a pore that permits the controlled passage of particular ions across the plasma membrane. The electrochemical gradient for the permeant ions drives the passive ion flux.
When a chemical ligand, such as a neurotransmitter, attaches to the protein, ligand-gated ion channels open. Changes in membrane potential cause voltage channels to open and close. When a receptor physically deforms, as in the case of pressure and touch receptors, mechanically-gated channels open.
Learn more about ligand-gated ion channel here:
brainly.com/question/15215628
#SPJ4