Answer:
To prevent our clothes from dust, dirt, spills and debris during cooking, serving, cleaning or performing a creative task. Aprons protect your clothes and acts as a protective barrier.
(a) The speed of a satellite on a low lying circular orbit around this planet is 7,338.93 m/s.
(b) The minimum speed required for a satellite in order to break free permanently from the planet is 10,378.82 m/s.
(c) The radius of the synchronous orbit of a satellite is 69,801 km .
<h3>Speed of the satellite</h3>
v = √GM/r
where;
- M is mass of the planet
- r is radius of the planet
v = √[(6.67 x 10⁻¹¹ x 4.74 x 10²⁴) / (5870 x 10³)]
v = 7,338.93 m/s
<h3>Escape velocity of the satellite</h3>
v = √2GM/r
v = √[( 2 x 6.67 x 10⁻¹¹ x 4.74 x 10²⁴) / (5870 x 10³)]
v = 10,378.82 m/s
<h3>Speed of the satellite at the given period </h3>
v = 2πr/T
r = vT/2π
r = (7,338.93 x 16.6 x 3600 s) / (2π)
r = 69,801 km
Thus, the speed of a satellite on a low lying circular orbit around this planet is 7,338.93 m/s.
The minimum speed required for a satellite in order to break free permanently from the planet is 10,378.82 m/s.
The radius of the synchronous orbit of a satellite is 69,801 km .
Learn more about minimum speed here: brainly.com/question/6504879
#SPJ1
Answer:
The volume of water that was in the kettle is 1170 
Explanation:
Given:
Power, P = 2.0 kW = 2000 W, Mass of stainless steel,
= 710 g = 0.71 kg at temperature of 
Part A:
If it takes time, t = 3.5 minutes to reach boiling point of water
, then from conservation of energy,
Total energy supplied by the burner = Total heat gained by the water and the stainless steel to rise from
to 
i.e. Pt = 
(100 - 20 ) + 
(100 - 20 )
=
= 1.17 kg
where
= 4200 J/Kgk (specific heat capacity of water),
= 450 J/Kgk (specific heat capacity of steel)
But volume of water in the the kettle, v =
∴ v = 1170 
The runner's acceleration depends on the net force acting on him.
His acceleration is going to be ...
(net force on him, in Newtons) divided by (80 kg) .
The unit of the acceleration is meters/second-squared .
The direction of the acceleration is the same as the direction
of the net force.