1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bond [772]
3 years ago
13

Is the normal force equivalent to the weight of an object?

Physics
1 answer:
Greeley [361]3 years ago
4 0

Answer:

No.

Explanation:

If there are no applied forces, normal force is usually equivalent to the weight of the object but if there are outside force (force that makes the object to move) especially if it's inclined, then the inclined force would then affect the normal force.

You might be interested in
U need help so can some one help me
GrogVix [38]

Answer:

are sure this is a question

7 0
2 years ago
The people in a location in Florida mainly grow crops which need a lot of water. Which of these statements about the location be
Arisa [49]
The people of Florida are closest to the equator and also near 2 different bodies of water and have rivers running thru them as well salt water and fresh water. they need alot of freshwater due to monsoon seasons, hurricanes etc, its humid and hot there so naturally you need to water more often and frequently.
4 0
3 years ago
Read 2 more answers
A kangaroo jumps straight up to a vertical height of 1.45 m. How long was it in the air before returning to Earth?
dexar [7]

Answer:

1.08 s

Explanation:

From the question given above, the following data were obtained:

Height (h) reached = 1.45 m

Time of flight (T) =?

Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:

Height (h) = 1.45 m

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =?

h = ½gt²

1.45 = ½ × 9.8 × t²

1.45 = 4.9 × t²

Divide both side by 4.9

t² = 1.45/4.9

Take the square root of both side

t = √(1.45/4.9)

t = 0.54 s

Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).

Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:

Time (t) taken to reach the height = 0.54 s

Time of flight (T) =?

T = 2t

T = 2 × 0.54

T = 1.08 s

Therefore, it will take the kangaroo 1.08 s to return to the earth.

3 0
3 years ago
A cyclist traveling at constant speed of 12m/s when he passes a stationary bus.The bus starts moving just as the cyclist passes
Bogdan [553]

Answer:

A.) 8 seconds

B.) 16 seconds

C.) 48 m

Explanation:

Given that a cyclist traveling at constant speed of 12 m/s

and the bus accelerates uniformly at 1.5ms²

A.) The bus has the following parameters

Acceleration a = 1.5 m/s^2

Initial velocity U = 0. Since the bus is starting from rest.

Final velocity V = 12 m/s

Use equation one of linear motion.

V = U + at

Substitute V, U and a into the formula

12 = 0 + 1.5t

1.5t = 12

t = 12/1.5

t = 8 seconds

Therefore, the bus reach the same speed as the cyclist at 8 seconds.

B.) For the cyclist moving at constant speed, acceleration a = 0. Using second equation of motion

h = Ut + 1/2at^2

Since a = 0, the equation is reduced to:

h = Ut.

Also, for the bus,

h = Ut + 1/2at^2

Equate the two equations since the h is the same

Ut = Ut + 1/2at^2

Substitute all the parameters into the formula

12t = 0 + 1/2 × 1.5t^2

12t = 0.75t^2

0.75t = 12

t = 12/0.75

t = 16 seconds

Therefore, the bus takes 16 seconds to catch the cyclist

C.) Use third equation of linear motion.

V^2 = U^2 + 2as

Where s = distance

Substitute V, U and a into the formula

12^2 = 0 + 2 × 1.5 S

144 = 3S

S = 144/3

S = 48 m

8 0
3 years ago
How do you change the currents in a circuit
mel-nik [20]
-
Eddy Current Testing

Introduction
Basic Principles
History of ET
Present State of ET

The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag

Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter

Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching

Procedures Issues 
Reference Standards
Signal Filtering

Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection 
Conductivity 
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings

Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.

Quizzes

Formulae& Tables
EC Standards & Methods
EC Material Properties
-






Current Flow and Ohm's Law

Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.

I = V / R 

Where: 

I =

Electrical Current (Amperes)

V =

Voltage (Voltage)

R =

Resistance (Ohms)

    

Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.

The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.

Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.

See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?


4 0
3 years ago
Other questions:
  • A noninverting op-amp circuit with a gain of 96 V/V is found to have a 3-dB frequency of 8 kHz. For a particular system applicat
    9·1 answer
  • The earth pulls on the apple, and the apple pulls on the earth. This idea is represented by Newton's ___ Law of Motion.
    10·1 answer
  • You have a neutral balloon. What is its charge after 12000 electrons have been removed from it? The elemental charge is 1.6 × 10
    11·1 answer
  • If your kinetic energy is different from your work input (either greater or less) throuroughly explain what caused this discrepe
    8·1 answer
  • How do hormones affect only certain cells in the body but not others?
    13·1 answer
  • A potential energy function for a system in which a two-dimensional force acts is of the form U = 3x6y − 5x. Find the force that
    11·1 answer
  • A hot-water bottle contains 787 g of water at 75∘C. If the liquid water cools to body temperature (37 ∘C), how many kilojoules o
    8·2 answers
  • A 1.00- and a 2.00- resistor are in parallel. What is the equivalent single resistance? ​
    7·1 answer
  • Which of the following changes would not lead to changes in the efficiency of
    7·1 answer
  • What is the velocity of a car that went a distance of 400ft in 25 seconds ​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!