Answer:
Because china was in war, and her parents didn't have enough money for to go to school.
Answer:
a = 1.152s
b = 0.817 m
c = 7.29m/s
Explanation: let the following
From the first equation of linear motion
V = u+at..........1
parameters be represented as :
t = Time taken
v = Final velocity
a = Acceleration due to gravity = 9.8m/s²
u = Initial velocity = 4 m/s
s = Displacement
V = 0
Substitute the values into equation 1
0 = 4-9.8(t)
-4 = -9.8t
t = 4/9.8
t = 0.408s
From : s = ut+1/2at^2.........2
S = 4×0.408+0.5(-9.8)×0.408^2
S= 1.632-4.9(0.166)
S = 1.632-0.815
S = 0.817m
Her highest height above the board is 0.817 m
Total height she would fall is 0.817+1.90 = 2.717 m
From equation 2
s = ut+1/2at^2
2.717 m = 0t+0.5(9.8)t^2
2.717 m = 0+4.9t^2
2.717 m = 4.9t^2
2.717/4.9 = t^2
0.554 =t^2
t =√0.554
t = 0.744s
Hence, her feet were in the air for 0.744+0.408seconds
= 1.152s
Also recall from equation 1
V= u+at
V = 0+9.8(0.744)
V = 7.29m/s
Hence, the velocity when she hits the water is 7.29m/s
Finally,
a = 1.152s
b = 0.817 m
c = 7.29m/s
Answer: Option (D) is the correct answer.
Explanation:
The given elements Li, C and F are all second period elements. So, when we move from left to right across a period then there occurs increase in number of valence electrons as there occurs increase in total number of electrons.
So, it means more electrons are added to the same energy level.
Thus, we can conclude that a property of valence electrons for each element is located in the same energy level is common in the given elements.
Question:
A point charge of -2.14uC is located in the center of a spherical cavity of radius 6.55cm inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.
a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity.
Express your answer using two significant figures.
Answer:
The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity 
Explanation:
A point charge ,q =
is located in the center of a spherical cavity of radius ,
m inside an insulating spherical charged solid.
The charge density in the solid , d = 
Distance from the center of the cavity,R =
Volume of shell of charge= V =![(\frac{4\pi}{3})[ R^3 - r^3 ]](https://tex.z-dn.net/?f=%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D)
Charge on the shell ,Q = 
![Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d](https://tex.z-dn.net/?f=Q%20%3D%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D%20%5Ctimes%20d)
![Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}](https://tex.z-dn.net/?f=Q%20%3D%204.1888%5Ctimes%2010%5E%7B-4%7D%20%5B5.76364%20%5D%20%5Ctimes%207.35%20%5Ctimes%2010%5E%7B-4%7D)


Electric field at
m due to shell
E1 = 

Electric field at
due to 'q' at center 
E2 =

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity
= E2- E1
![=[ 2.134 - 1.769 ]\times 10^6](https://tex.z-dn.net/?f=%3D%5B%20%202.134%20%20-%201.769%20%5D%5Ctimes%2010%5E6)
